• Title/Summary/Keyword: Temperature calculation

Search Result 1,455, Processing Time 0.024 seconds

Effect of Contact Conductance and Semitransparent Radiation on Heat Transfer During CVD Process of Semiconductor Wafer (접촉전도와 반투명 복사가 반도체 웨이퍼의 CVD 공정 중 열전달에 미치는 영향)

  • Yoon, Yong-Seok;Hong, Hye-Jung;Song, Myung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.149-157
    • /
    • 2008
  • During CVD process of semiconductor wafer fabrication, maintaining the uniformity of temperature distribution at wafer top surface is one of the key factors affecting the quality of final products. Effect of contact conductance between wafer and hot plate on predicted temperature of wafer was investigated. The validity of opaque wafer assumption was also examined by comparing the predicted results with Discrete Ordinate solutions accounting for semitransparent radiative characteristics of silicon. As the contact conductance increases predicted wafer temperature increases and the differences between maximum and minimum temperatures within wafer and between wafer and hot plate top surface temperatures decrease. The opaque assumption always overpredicted the wafer temperature compared to semitransparent calculation. The influences of surrounding reactor inner wall temperature and hot plate configuration are then discussed.

Calculation of Temperature Rise in Gas Insulated Busbar by Coupled Magneto-Thermal-Fluid Analysis

  • Kim, Hong-Kyu;Oh, Yeon-Ho;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.510-514
    • /
    • 2009
  • This paper presents the coupled analysis method to calculate the temperature rise in a gas insulated busbar (GIB). Harmonic eddy current analysis is carried out and the power losses are calculated in the conductor and enclosure tank. Two methods are presented to analyze the temperature distribution in the conductor and tank. One is to solve the thermal conduction problem with the equivalent natural convection coefficient and is applied to a single phase GIB. The other is to employ the computational fluid dynamics (CFD) tool which directly solves the thermal-fluid equations and is applied to a three-phase GIB. The accuracy of both methods is verified by the comparison of the measured and calculated temperature in a single phase and three-phase GIB.

A study for improvement of engine bearing reliability based on temperature analysis (엔진 CON-ROD베어링 내 SCUFFING성 향상에 관한 연구)

  • 최재권;이정현
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.110-119
    • /
    • 1992
  • Crank pin temperatures were measured and analyzed to find out practical method which can predict the engine bearing reliability. The measuring points were determined to be near the MOFT region and far from that by theoretical calculation. The effect of engine running condition, oil temperature, the change of oil circuit into bearing and crankshaft endplay on crank pin temperature were experimentally tested. The result obtained was as following. The crank pin temperature was dependent on oil film thickness and directly influenced by the change of test condition. Also, the length of the crankshaft endplay was confirmed to be critical to connecting rod bearing failure. In conclusion, we found that the measurement method of crank pin temperature can be used for predicting the engine bearing reliability.

  • PDF

Fuzzy Model-Based Fault Detection Method of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 퍼지모델 기반 고장검출 방법)

  • Moon, Byoung-Joon;Kim, Dong-Han;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1009-1013
    • /
    • 2009
  • In this paper, a robust fault detection method for varying temperature based on fuzzy model is proposed. To develop a robust force estimation model, it needs temperature information because the output of force sensor is affected by a temperature variation. The nonlinear dynamic system, such as the parking force of the EPB (Electronic Parking Brake) system is necessary to have a higher order equation model. But, because of the calculation time, the higher order equation model is hard to be used in real application. In case of the lower order equation model, the result is not as accurate as acceptable. To solve this problem, the robust fuzzy model-based fault detection is developed. A proposed fault detection method for varying temperature is verified by HILS (hardware in the loop simulation).

Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine (플룸에 의한 액체로켓 저부면 복사 가열 해석)

  • Sohn C. H.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.65-70
    • /
    • 1999
  • Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. The averaged radiative heat flux reaching the base plane is about $5kW/m^2$ at the flight altitude of 10.9km. This value is small compared with radiative heat flux caused by constant-temperature (1500K) plume emission, but it is not negligibly small. At higher altitude (29.8km), view factor between the babe plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000K) due to convective heat transfer.

  • PDF

Study on Urban Temperature Prediction Method Using Lagrangian Particle Dispersion Model (라그랑지안 입자모델을 활용한 도시기온 예측기법의 연구)

  • Kim, Seogcheol;Yun, Jeongim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • A high resolution model is proposed for calculating the temperature field of a large city, based upon a Lagrangian particle model. Utilizing the analogy between the heat and mass transport phenomena in turbulent flows, a Lagrangian particle model, originally developed for air pollutant dispersion problems, is adapted for simulating heat transport. In the model conceptual heat particles are released into the atmosphere from the heat sources and move along with the turbulent winds in accordance with the Markov process. The potential temperature assumed to be conserved along with heat particles serves as a tag, so the temperature fields can be deduced from the distribution of particles. The wind fields are constructed from a diagnostic meteorology model incorporating a morphological model designed for building flows. Test run shows the robustness of the modeling system.

Analysis of Relationship between Vegetation Cover Rates and Surface Temperature Using Landsat TM Data (Landsat TM 데이터에 의한 식생피복율과 지표면온도와의 관계 해석)

  • Park, Jong-Hwa;Na, Sang-Il;Kim, Jin-Su
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.569-573
    • /
    • 2005
  • Land surface temperature(LST) is one of the key parameters in physics and meteorology of land-surface processes on regional and global scales. Urban Heat Island(UHI), a meteorological phenomenon by which the air temperature in an urban area increases beyond that in the suburbs, grows with the progress of urbanization. Satellite remote sensing has been expected to be effective for obtaining thermal information of the earth's surface with a high resolution. The main purpose of this study is to produce LST map of Cheongju and to analyze the spatial distributions of surface heat fluxes in urban areas. This study, taking Cheongju as the study area, aims to examine relationship between vegetation cover rates and surface temperature, and to clarify a method for calculation surface temperature with Landsat TM thermal images.

  • PDF

Calculation of Heat Loads and Temperature Distribution for the HTS Termination Current Lead (HTS 단말 전류도입선 형상에 대한 온도분포 및 열부하 계산)

  • 조승연;사정우;김도형;김동락;김승현;양형석
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.36-39
    • /
    • 2003
  • HTS (High Temperature Superconducting) cable termination current lead has been designed based on simplified boundary conditions such as fixed temperature at both end and sdiabatic/convection in the side wall. However, in the real situation the current lead is enclosed with insulators and exposed to insulation oil and L$N_2$. Therefore it is necessary to consider them for the proper current lead design. In this paper, several important design parameters were chosen and their effect on the temperature distribution and heat loads on the current lead has been investigated. It was found that current lead has to be 2 stage to reach the minimum temperature requirement of insulation oil and insulator is required to reduce the cooling capacity of cryogenic system.

  • PDF

Experimental Study for Horizontal Geothermal Heat Pump Heating Performance Analysis (수평형 지열 히트펌프 난방 성능 분석을 위한 실험적 연구)

  • Ihm, Pyeong chan;Cho, Sung woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.2
    • /
    • pp.7-12
    • /
    • 2016
  • This study have an objective to suggest basic data and measured result of heating performance on water-water type horizontal geothermal heat pump which is based on heating and cooling load calculation result of small residential house. The average temperature during measured periods is $9.4^{\circ}C$ on primary EWT and is $7.6^{\circ}C$ on primary LWT. The temperature difference shows $1.8^{\circ}C$ as average temperature. Because the average outdoor temperature of peak is lager than on December and than on January, the temperature difference between EWT and LWT is bigger that on January than that on December. The system COP is 3.62.

A Study on the Estimation of Temperature Distribution in Ultrasonic Hyperthermia by 1-Dimensional FEM Model (1차원 유한요소법 모델을 이용한 초음파 Hyperthermia의 온도분포에 관한 연구)

  • Ha, Jae-Gyu;Seong, Goeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.29-38
    • /
    • 1987
  • In clinical applications of hyperthermia, temperatures can be measured at only a few locations, whereas accurate temperature profiles need to be known for efficient therapy. For doing this, bio-heat transfer equation was modified into 1 dimensional 2 boundary value problem for simplicity and the efficiency of time, and solved by Galerkin's method. The results were then applied to annular array transducer for both the calculation of its axial temperature distribution and the estimation of temperature profiles from a few measured temperature data.

  • PDF