• Title/Summary/Keyword: Temperature calculation

Search Result 1,454, Processing Time 0.041 seconds

Construction and Application of Experimental Formula for Nonlinear Behavior of Ferroelectric Ceramics Switched by Electric Field at Room Temperature during Temperature Rise

  • Ji, Dae Won;Kim, Sang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.67-73
    • /
    • 2018
  • A poled lead zirconate titanate (PZT) cube specimen that is switched by an electric field at room temperature is subject to temperature increase. Changes in polarization and thermal expansion coefficients are measured during temperature rise. The measured data are analyzed to obtain changes in pyroelectric coefficient and strain during temperature change. Empirical formulae are developed using linear or quadratic curve fitting to the data. The nonlinear behavior of the materials during temperature increase is predicted using the developed formulae. It is shown that the calculation results can be compared successfully with the measured values, which proves the accuracy and reliability of the developed formulae for the nonlinear behavior of the materials during temperature changes.

Flow Visualization and Calculation at the Outlet of Propellant Tank Pressurizing Gas Injector (추진제탱크 가압용 인젝터 출구에서의 유동가시화 및 해석)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Kwon, Ki-Jung;Chung, Yong-Cahp
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • Propellant tank pressurizing gas injector is used in the pressurization system of liquid propellant rocket to reduce incoming gas velocity and distribute the gas in the tank. Temperature distribution in the propellant tank ullage is varied according to the gas injector shape, and it has influence on the required pressurant gas and thermal phenomena in the tank. In this paper, diffuser type gas injector was studied to make the ullage have stratified temperature distribution. Injected gas flow at the outlet of prototype diffuser was visulized using particle image velocimetry method and it was compared with the results of calculation. Calculation was well agreed with measurement and was used as an inlet condition of propellant tank ullage calculation.

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF

Study on the 2G High Temperature Superconducting Coil for Large Scale Superconducting Magnetic Energy Storage Systems (대용량 에너지 저장장치용 2세대 고온 초전도 코일의 특성해석)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • Large scale superconducting magnetic energy storage (SMES) system requires very high magnetic energy density in its superconducting coils to enhance the energy capacity and efficiency of the system. The recent high temperature superconducting (HTS) conductors, so called 2G conductors, show very good performance under very high magnetic field so that they seem to be perfect materials for the large scale SMES coils. A general shape of the coil system with the 2G HTS conductor has been a tor oid, because the magnetic field applied perpendicularly to the surface of the 2G HTS conductor could be minimized in this shape of coil. However, a toroid coil requires a 3-dimensional computation to acquire the characteristics of its critical current density - magnetic field relations which needs very complicated numerical calculation, very high computer specification, and long calculation time. In this paper, we suggested an analytic and statistical calculation method to acquire the maximum magnetic flux density applied perpendicularly to the surface of the 2G HTS conductor and the stored energy in the toroid coil system. Although the result with this method includes some errors but we could reduce these errors within 5 percent to get a reasonable estimation of the important parameters for design process of the HTS toroid coil system. As a result, the calculation time by the suggested method could be reduced to 0.1 percent of that by the 3-dimensional numerical calculation.

Investigation of thermodynamic analysis in GaN thick films gtowth (GaN 후막 증착의 열역학적 해석에 관한 연구)

  • Park, Beom Jin;Park, Jin Ho;Sin, Mu Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.387-387
    • /
    • 1998
  • This paper reports on a thermodynamic analysis for the GaN thick film growth by vapor phaseepitaxy method. The thermodynamic calculation was performed using a chemical stoichiometric algorism. Thesimulation variables include the growth temperature in a range 400~1500 K, the gas ratios $(GaCl_3)/(GaCl_3+NH_3)$and $(N_2)/(GaCl_3+NH_3)$. The theoretical calculation predicts that the growth temperature of GaN be in thelower range of 450~750 K than the experimental results. The difference in the growth temperature betweenthe simulation and the experiments indicates that the vapor phase epitaxy of GaN is kinetically limited,presumably, due to the high activation energy of thin film growth.

Investigation of thermodynamic analysis in GaN thick films gtowth (GaN 후막 증착의 열역학적 해석에 관한 연구)

  • 박범진;박진호;신무환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.388-395
    • /
    • 1998
  • This paper reports on a thermodynamic analysis for the GaN thick film growth by vapor phase epitaxy method. The thermodynamic calculation was performed using a chemical stoichiometric algorism. The simulation variables include the growth temperature in a range 400~1500 K, the gas ratios $(GaCl_3)/(GaCl_3+NH_3)$ and $(N_2)/(GaCl_3+NH_3)$. The theoretical calculation predicts that the growth temperature of GaN be in the lower range of 450~750 K than the experimental results. The difference in the growth temperature between the simulation and the experiments indicates that the vapor phase epitaxy of GaN is kinetically limited, presumably, due to the high activation energy of thin film growth.

  • PDF

Calculation of Interaction Parameters in Mixed Layer Minerals and their Application (층상형 혼합광물의 상호작용계수의 계산 및 응용)

  • 이성근;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 1997
  • Based on the method of determination for relative stability of each phase from the difference among the interaction parameters of the phases consisting the mixed layer, the types of interactions between layers were specified and interaction parameter between layers in ordered domain was analytically derived as a function parameter between layers in ordered domain was analytically derived as a function of not only temperature and mole fraction of layers but also ordering parameter. Interaction parameter between the different layers in ordered phase, L is as follows:{{{{ {L }_{1 } (X,Q,T)= { C} over { Q} -4(1-2Q) { L}^{2 } - { RT} over {2} ln { 1} over {2 } - { 2RT} over { { X}_{ s} } ln { { 4QX}`_{s } ^{2 } } over {(1- { X}_{s }- { QX}_{s })( { X}_{s }- {QX }_{s } ) } }}}}L2 is the interaction parameter between ordered and disordered phase in domain and is the mole fraction of the domain which represent the infinite length of mixed layer mineral and Q and C are the reaction progress parameter and arbitrary constant, respectively. This equation was used for the I/S mixed layer clay minerals to infer the relative stability of R1 type I/S mixed layer in the temperature range from 373K to 450K. The result of calculation suggest that, owing to the decrease in interaction parameter with increasing temperature. The interaction parameter decreases more rapidly with decreasing mole fraction of smectite in domain, which is consistent with the fact that the probability of finding the series smectite layer is lo in the domain with small mole fraction of smectite layers in natural system.

  • PDF

Flow and heat transfer analysis for the performance improvement of cross-flow fin-tube heat exchangers (에어컨 실외기용 휜-관 직교형 열교환기의 열, 유동 해석 및 휜 성능 개선을 위한 연구)

  • An C. S.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.183-189
    • /
    • 2004
  • The flow and the heat transfer about the cross-flow fin-tube heat exchanger in an out-door unit of a heat pump system has been numerically Investigated. Using the general purpose analysis code, FLUENT, the Navier-Stokes equations and the energy equation are solved for the three dimensional computation domain that encompasses multiple rows of the fin-tube. The temperature on the fin and tube surface is assumed constant but compensated later through the fin efficiency when predicting the heat-transfer rate. The contact resistance is also taken into consideration. The flow and temperature fields for a wide range of inlet velocity and fin-tube arrangements are examined and the results are presented in the paper. The details of the flow are very well captured and the heat transfer rate for a range of inlet velocity is in excellent agreement with the measured data. The flow solution provides the effective permeability and the inertial resistance factor of the heat exchanger if the exchanger were to be approximated by the porous medium. This information is essential in carrying out the global flow field calculation which, in turn, provides the inlet velocity lot the microscopic temperature-field calculation of the heat exchanger unit.

  • PDF

Evaluation on the Applicability of Refractory Coatings to Metal Mold for Cast Iron (주철금형주조용 도형재의 적용성 평가)

  • Seo, Kum-Hee;Kim, Ki-Young;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.3
    • /
    • pp.144-149
    • /
    • 2012
  • A series of refractory mold coatings were applied to cast iron specimens, and their resistances to wear and spalling were investigated. Tests were carried out with own made measures, and also a calculation was tried for the comparison of a part of results like spalling. Worn width by scrubbing the indenter on the coating layer increased significantly at high temperature. Temperature increasing rate across the specimen when the coating side was exposed to $1000^{\circ}C$ was in the range of $14.5{\sim}75.8^{\circ}C$/sec mm, and specimens with thicker coating layer showed lower temperature increase. Severe spalling of coated layer was observed after heating the specimen, and it was able to confirm by calculation using a commercial code.

Trapped Field Analysis of a High Temperature Superconducting Bulk with Artificial Holes

  • Jang, Guneik;Lee, Man-Soo;Han, Seung-Yong;Kim, Chan-Joong;Han, Young-Hee;Park, Byung-Joon
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.181-185
    • /
    • 2011
  • To improve trapped field characteristics of a high temperature superconducting (HTS) bulk, a technique to implement artificial holes has been studied. The artificial holes, filled up with epoxy or metal, may provide better cooling channel and enhance mechanical strength of the HTS bulk. Although many useful researches based on experiments have been reported, a numerical approach is still limited because of several reasons that include: 1) highly non-linear electromagnetic properties of HTS; and 2) difficulty in modeling of randomly scattered "small" artificial holes. In this paper, a 2-D finite element method with iteration is adopted to analyze trapped field characteristics of HTS bulk with artificial holes. The validity of the calculation is verified by comparison between measurement and calculation of a trapped field in a $40{\times}40\;mm$ square and 3.1 mm thick HTS bulk having 16 artificial holes with diameter of 0.7 mm. The effects of sizes and array patterns of artificial holes on distribution of trapped field within HTS bulk are numerically investigated using suggested method.