• Title/Summary/Keyword: Temperature SCR

Search Result 259, Processing Time 0.024 seconds

A Study on the Oxygen Behavior Characterization of V2O5/TiO2 Catalysts by Ball Milling (V2O5/TiO2 촉매의 Ball Milling에 따른 산소 거동 특성 연구)

  • Kwon, Dong Wook;Park, Kwang Hee;Lee, Sang Moon;Jang, Du Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.605-609
    • /
    • 2011
  • We study on the oxygen behavior of $V_2O_5/TiO_2$ catalysts in the $NH_3$-selective catalytic reduction (SCR) prepared by the ball milling processing. There are not any changes in crystal structure and surface area of the $TiO_2$ catalyst by ball milling, but the maximal reduction temperature decreased in $H_2$-temperature programmed reduction (TPR) analysis. Experimental observations with various concentrations of oxygen indicate that all catalysts showed a very low NOx conversion rate in the absence of oxygen and the reactivity of ball milled catalyst higher depending on the oxygen. It is occurred because the degree of participation of atmospheric oxygen and lattice oxygen is great than that of the not-milled catalyst.

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

A Study on the Effect of De-NOx Device on GHG Emissions (De-NOx 저감장치가 온실가스 배출량에 미치는 영향 연구)

  • Kim, Sungwoo;Kim, Jeonghwan;Kim, Kiho;Oh, Sang-Ki
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.212-220
    • /
    • 2018
  • As increase the number of vehicles, the issue of greenhouse gas that was emitted by them became important. As a result, greenhouse gas (GHG) regulations are being strengthened and efforts are being actively made to reduce greenhouse gas emissions in the automotive industry. In the other hand, regulations for harmful emission of vehicles have been reinforced by step. Especially, the lastly applied step, so called Euro 6, not only decreased NOx limit down to half of Euro 5 but also introduced real driving emission limit for NOx and PN. It is a challenge for manufacturers to meet the recent GHG regulation as well as the latest emission regulation. To overcome these regulations a De-NOx after-treatment system is being applied to diesel vehicles that are known emitting the lowest GHG among conventional internal combustion engines. At the time of the introduction of Euro 6 emission standard in Korea, in the domestic fuel economy certification test, some diesel vehicles emitted more $CH_4$ than Euro 5 vehicles. As a result, it was confirmed that LNT-equipped vehicles emitted a high level $CH_4$ and the level exceeded the US emission standard. In order to determine the reason, various prior literature was investigated. However, it was difficult to find a detailed study on the methane increase with LNT. In this paper, to determine whether the characteristics of vehicles equipped with LNT the affects the above issue and other greenhouse gases, 6 passenger cars were tested on several emission test modes and ambient temperatures with a environment chamber chassis dynamometer. 2 cars of these were equipped with LNT only, other 2 cars had SCR only, and LNT + SCR were applied to remaining 2 cars. The test result shown that the vehicles equipped with LNT emitted more $CH_4$ than the vehicles with SCR only. Also, $CH_4$ tended to increase as the higher acceleration of the test mode. However, as the test temperature decreases, $CH_4$ tended to decreased. $CO_2$ was not affected by kinds of De-NOx device but characteristic of the test modes.

Mid-Temperature Operation Characteristics of Commercial Reforming Catalysts: Comparison of Ru-Based and Ni-Based Catalyst (상용 개질촉매의 중온 영역 운전 특성: Ru 촉매와 Ni 촉매 비교)

  • KIM, YOUNGSANG;LEE, KANGHUN;LEE, DONGKEUN;LEE, YOUNGDUK;AHN, KOOKYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Most of the reformer experiments have been conducted only in high-temperature operation conditions above 700℃. However, to design high efficiency solid oxide fuel cell, it is necessary to test actual reaction performance in mid-temperature (550℃) operation areas. In order to study the operation characteristics and performance of commercial reforming catalysts, a reforming performance experiment was conducted on mid-temperature. The catalysts used in this study are Ni-based FCR-4 and Ru-based RuA, RuAL. Experiments were conducted with a Steam-to-carbon ratio of 2.0 to 3.0 under gas hourly space velocity (GHSV) 2,000 to 5,000 hr-1. As a result, RuA and RuAL catalysts showed similar gas composition to the equilibrium regardless of the reforming temperature. However, the FCR-4 catalyst showed a lower hydrogen yield compared to the equilibrium under high GHSV conditions.

The Application of Dump Combustor for Evaluation of DPF(Diesel Particulate Filter) System (DPF 성능 평가를 위한 Dump Combustor의 활용)

  • Nam, Youn-Woo;Lee, Won-Nam;Oh, Kwang-Chul;Lee, Chun-Beom
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.98-103
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Temperature, gas compostion and flow rate of exhaust gas are important parameters in DPF evaluation, especially regeneration process. Engine dynamometer and degment tester are generally used in DPF evaluation so far. But these test method couldn't reveal the effect of various parameters on real DPF, such as O2 concentration, amount of soot and exhaust gas temperature. This research has studied the possibility using dump combustor that used to take an approach lean premixed combustion in gas turbine for a DPF power and optimized. It is possible that utilize the system as DOC (Diesel Oxidation Catalyst) and SCR(Selective Catalytic Reduction) assessments test as well as DPF evaluation

  • PDF

Characteristics of ZrO2 Felt Supported Cu/Zn Catalyst for Methanol Steam Reforming (메탄올 수증기개질을 위한 ZrO2 펠트 기반 Cu/Zn 촉매 특성 연구)

  • CHOI, EUNYEONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • Characteristics of $ZrO_2$ felt supported Cu/Zn catalysts have been investigated for the production of hydrogen via methanol steam reforming. Cu and Zn in different weight percent were loaded using wet impregnation over $ZrO_2$ felt support. The catalysts were characterized with BET and FE-SEM. The performance of these synthesized catalysts were investigated at SCR=1.5, $GHSV=2000h^{-1}$, temperature=$300{\sim}400^{\circ}C$, and pressure=2.5~19.5 barA. The results showed that the $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst was most active in terms of methanol conversion and hydrogen production. The methanol conversion in steam reforming of methanol was 84.6% at 19.5 barA and furnace $400^{\circ}C$ over $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst. The catalysts prepared using $ZrO_2$ felt show higher reactor temperature than the pellet type catalyst at same furnace temperature.

The Effect of Needle Electrode in the Static Charge Elimination Methods for Streaming-Electrification Insulating Oil (유동 대전된 절연유의 제전 방식중 침전극 삽입의 영향(II))

  • Cho, Y.K.;Kim, Y.W.;Lim, H.C.;Kim, D.S.;Shin, Y.D.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.624-626
    • /
    • 1993
  • The Electrical Charge generated by friction in flowing insulating oil can create hazadous accidents. Neutralization of static charges in the oil during transportation is an obvious method of overcoming the problem of internal electric charge. It is known that SCR(Static Charge Reducer) can neutralize much of this charge by the needle electrode and mixing it with the original charge. In our experiment, a filter to generate static charge was set just befor a measurement pipe, and streaming current from the filter to the earth $I_s$, current from the electrode to the earth $I_e$ and current from the receiving tank to the earth $I_f$ were measured in a steady state. As a result, charge density and needle electrode current increases with increasing of oil temperature. Charge elimination rate decreases with increasing of oil flow rate, and increases with increases of oil temperature. Faraday Cage current decreases with increasing of oil temperature.

  • PDF

Studies on the Exhaust Gas Characteristics of the Vehicle Diesel according to the Test Mode and Ambient Temperature (시험모드 및 대기온도에 따른 경유자동차의 배출가스 특성에 관한 연구)

  • Lee, Jung-Cheon;Jeon, Cheol-Hwan;Kim, Ki-Ho;Oh, Sang-Gi;Park, An-Young
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.93-98
    • /
    • 2016
  • Environmental problems are issued throughout all over the world and which are needed the strength management. In case of the diesel cars are also being developing and studying continuously about various after-treatments device such as EGR, LNT, SCR, DPF and DOC etc. which are used for decreasing $NO_X$ and PM. The air temperature goes up to $39^{\circ}C$ in summer and goes down to $-20^{\circ}C$ in winter because of the location. These changing of the temperature can effect to the engine and harmful exhaust gas discharged and it seems to make the increase - decrease different. The result of the evaluate while changing between the test-mode and the air temperature, which expresses that WLTC-mode is 2.2 times and FTP_75 mode is 4.1~6 times increase to the comparison NEDC-mode of the current regulation. The exhaust characteristic of $NO_X$ by the changing temperature increases in the low temperature and 4.3 times in $14^{\circ}C$ and 21.3 times in $-7^{\circ}C$ with maximum when it compares to $23^{\circ}C$. The fuel efficiency of the different weight car and engine with same data is about 5.7 % in maximum.

A Basic Study on Physical Method for Preventing Recombination of Gas Product from the Decomposition of Ammonium Carbamate (암모니움 카바메이트 분해 시 생성된 가스의 재결합 방지를 위한 물리적 방법의 기초연구)

  • Chun, Minwoo;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.639-647
    • /
    • 2017
  • This basic study is focused on the physically removal method of carbon dioxide from the decomposition of ammonium carbarmate to prevent the recombination of ammonium salts. A basic visual experimental set-up was designed and constructed to observe the recombination phenomena from the proper composition of ammonia gas, carbon dioxide gas, and compressed air dilution gas. To quantify the recombination phenomena, a simple device was designed to measure the weight change under severe cases for three different tube sizes. The temperature and pressure in the visual tube and the volumetric flow rates of the nitrogen dilution gas were studied and the conditions to avoid recombination were analyzed according to mean free path theory. Diffusivity values based on the Chapman-Enskog theory were calculated from the experimental data. These value may serve as an index for the prevention of recombination.

Numerical Investigation of the Urea Melting and Heat Transfer Characteristics with Three Different Types of Coolant Heaters (냉각수 순환 방식 가열원 형상에 따른 요소수 해동 특성에 관한 수치적 연구)

  • Lee, Seung-Yeop;Kim, Man-Young;Lee, Chun-Hwan;Park, Yun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.125-132
    • /
    • 2012
  • Urea-SCR system, which converts nitrogen oxides to nitrogen and water in the presence of a reducing agent, usually AdBlue urea solution, is known as one of the powerful NOx reduction systems for mobile as well as stationary applications. For its consistent and reliable operation in mobile applications, such various problems as transient injection, ammonia slip, and freezing in cold weather have to be resolved. In this work, therefore, numerical study on three-dimensional unsteady heating problems were analyzed to understand the melting and heat transfer characteristics such as urea liquid volume fraction, temperature profiles and generated natural convection behavior in urea solution by using the commercial software Fluent 6.3. After validating by comparing numerical and experimental data with pure gallium melting phenomena, numerical experiment for urea melting is conducted with three different coolant heating models named CH1, 2, and 3, respectively. Finally, it can be found that the CH3 model, in which more coolant is concentrated on the lower part of the urea tank, has relatively better melting capability than others in terms of urea quantity of $1{\ell}$ for start-up schedule.