• Title/Summary/Keyword: Temperature SCR

Search Result 259, Processing Time 0.15 seconds

Characteristics of NOx Reduction and NH3 Slip in SNCR Using Pipe Nozzle for the Application of Hybrid SNCR/SCR Process (Hybrid SNCR/SCR 탈질공정에서 SNCR의 관통노즐에 의한 NOx 저감 및 NH3 Slip 특성)

  • Hyun, Ju Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.111-118
    • /
    • 2009
  • A hybrid SNCR/SCR plant was designed and manufactured, and experimented on the SNCR process in the first step to investigate the optimum operation conditions of SNCR, with the equivalence ratio of the reducing agent(NSR, 0.5~5.0), reaction temperature($850{\sim}1,100^{\circ}C$), nozzle type(wall nozzle, pipe nozzle), and nozzle position as variables. In the case of wall nozzles, the NOx reduction efficiency rapidly increased to 87% at 2.5 NSR and slowed down after this. Compared to the upward spray from the pipe nozzle, wall nozzles have narrower range of applicable reaction temperature. In the case of pipe nozzles, it rapidly increased to 77% at 1.5 NSR. But the pipe nozzle downward had no NOx reduction efficiency; on the contrary, NOx increased. When the reducing agent was sprayed upward from a pipe nozzle, the NOx reduction efficiency was 50~75% in the range of 0.5~1.5 NSR, and the NOx reduction efficiency was constant without fluctuations even in the change of reaction temperature from 890 to $1,000^{\circ}C$. When 5% urea solution was sprayed upward from the pipe nozzle, 200 ppm NOx decreased to approximately 60 ppm at 1.2 NSR, and the non-reacted $NH_3$ was 50~100 ppm. In this condition, we expect over 90% NOx reduction efficiency without additional supply of $NH_3$ to SCR at the back of SNCR.

A Study on Reaction Characteristics of H2 SCR using Pt/TiO2 Catalyst (Pt/TiO2 촉매의 H2 SCR 반응 특성에 관한 연구)

  • Kim, Sung Su;Choi, Hyun Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • This work investigated the catalytic reaction characteristics of $H_2$ SCR applied at low temperature ($80{\sim}150^{\circ}C$) using Pt catalyst supported on $TiO_2$. The experiments were performed in terms of $H_2O$, $O_2$ in reaction gas, calcination temperature of the Pt catalyst, $H_2$/NOx mole ratio, space velocity. $H_2O$ was an inhibitor of reaction on $H_2$ SCR using Pt catalyst, catalytic performance increased as $O_2$ concentration decreased. Nevertheless, $NH_3$ slip generated by the reaction between NOx and $H_2$ in the absence of $O_2$. While it was effective to calcine less than $600^{\circ}C$ by phase transition and the catalytic performance increased as $H_2$/NOx mole ratio increased. However, $H_2$ slip was not observed at that increase mole ratio by $H_2$ oxidation to $H_2O$.

A Study on PMOS Embedded ESD Protection circuit with Improved Robustness for High Voltage Applications. (향상된 감내특성을 갖는 PMOS 삽입형 고전압용 ESD 보호회로에 관한 연구)

  • Park, Jong-Joon
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.234-239
    • /
    • 2017
  • In this paper, we propose an ESD (Electrostatic Discharge) protection circuit based on a new structure of SCR (Silicon Controlled Rectifier) embedded with PMOS structure. The proposed ESD protection circuit has a built-in PMOS structure and has a latch-up immunity characteristic and an improved tolerance characteristic. To verify the characteristics of the proposed ESD protection circuit and to analyze its operating characteristics, we compared and analyzed the characteristics of the existing ESD protection circuit using TCAD simulation. Simulation results show that the proposed protection ESD protection circuit has superior latch-up immunity characteristics like the existing SCR-based ESD protection device HHVSCR (High Holding Voltage SCR). Also, according to the results of the HBM (Human Body Model) maximum temperature test, the proposed ESD protection circuit has a maximum temperature value of 355K, which is about 20K lower than the existing HHVSCR 373K. In addition, the proposed ESD protection circuit with improved electrical characteristics is designed by applying N-STACK technology. As a result of the simulation, the proposed ESD protection circuit has a holding voltage characteristic of 2.5V in a single structure, and the holding voltage increased to 2-STACK 4.2V, 3-STACK 6.3V, 4-STACK 9.1V.

NOx Removal of NH3-SCR Catalysts with Operating Conditions (공정조건에 따른 NH3-SCR용 촉매의 질소산화물 제거특성)

  • Park, Kwang Hee;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5610-5614
    • /
    • 2012
  • Performance of catalyst was studied with various operating conditions for selective catalytic reduction of $NO_x$ with $NH_3$. It is confirmed that catalysts containing Mn and Cu have a good efficiency in the usage of oxygen by the $H_2$-TPR analysis. In the case of catalyst #1, $NO_x$ conversion was decrease with the increase of reaction temperature. But in the case of catalyst #2, $NO_x$ conversion was increased and then remained constant with the increase of reaction temperature. This phenomenon is due to the difference of the $NH_3$ oxidation of both catalysts.

Study on the Effect of NH3-Selective Catalytic Reduction Efficiency according to Sb Calcination Temperature in V/Sb/TiO2 Catalyst (V/Sb/TiO2 촉매에서 Sb 소성온도에 따른 NH3-SCR 효율 영향 연구)

  • Choi, Gyeong Ryun;Yeo, Jong Hyeon;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.646-652
    • /
    • 2020
  • In this study, an NH3-selective catalytic reduction (SCR) experiment was performed to control NOx in the temperature range of 200~500 ℃. The reaction activity experiment was conducted by varying the firing temperature of Sb/TiO2 when using V/Sb/TiO2 composite as a catalyst. As a result, when the sintering temperature of Sb/TiO2 was 600 ℃, the efficiency was the best, and it was confirmed that the NOx conversion rate was close to 80% at the reaction temperature of 250 ℃. H2-temperature programmed reduction (TPR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses were employed to derive the cause of the activity enhancement when prepared at different firing temperatures as described above. As a result, when the sintering temperature of Sb/TiO2, which showed an excellent activity, was prepared at 600 ℃, it was confirmed that VSbO4 was generated. This indicates that the non-stoichiometric species of V increased, resulting in the excellent NOx conversion rate of V/Sb/TiO2.

A Study on Numerical Simulation of Gaseous Flow in SCR Catalytic Filter of Diesel Exhaust Gas Aftertreatment Device

  • Bae, Myung-Whan;Syaiful, Syaiful;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.360-368
    • /
    • 2010
  • A SCR catalytic filter system is used for reducing $NO_x$ and soot emissions simultaneously from diesel combustors. The amount of ammonia (as a reducing agent) must be controlled with the amount of $NO_x$ to obtain an optimal $NO_x$ conversion. Hence, gas mixing between ammonia and exhaust gases is vital to ensure that the SCR catalyst is optimally used. If ammonia mass distribution is not uniform, slip potential will occur in rich concentration areas. At lean areas, on the other hand, the catalyst is not fully active. The better mixing is indicated by the higher uniformity of ammonia mass distribution which is necessary to be considered in SCR catalytic filter system. The ammonia mass distributions are depended on the flow field of fluids. In this study, the velocity field of gaseous flow is investigated to characterize the transport of ammonia in SCR catalytic filter system. The influence of different injection placements on the ammonia mass distribution is also discussed. The results show that the ammonia mass distribution is more uniform for the injector directed radially perpendicular to the main flow of inlet at the gravitational direction than that at the side wall for both laminar (Re = 640) and turbulent flows (Re = 4255). It is also found that the mixing index decreases as increasing the heating temperature in the case of ammonia injected at the side wall.

Development of NO2/NOx Ratio Estimation Model for Urea-SCR System Application on Non-road Diesel Engine (비도로용 디젤엔진의 Urea SCR system 적용을 위한 NO2/NOx ratio 예측모델 개발에 관한 연구)

  • Kang, Seokho;Kim, Hoonmyung;Kang, Jeongho;Park, Eunyong;Kwon, Ohyun;Kim, Daeyeol
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.178-187
    • /
    • 2020
  • The current emission regulations, US Tier-4 and EU Stage-V, are only able to satisfy the regulations when all currently mass-produced emission reduction technologies such as EGR, DOC, DPF, and SCR are applied. Therefore, in this study, for the application of the Urea-SCR system to non-road diesel engines, the database was established by measuring the NO, NO2 concentration and calculating the NO2/NOx ratio based on the catalyst temperature and exhaust mass flow rate. Also, based on the measured NO2/NOx ratio data, a mathematical model was proposed to predict the NO2/NOx ratio at SCR catalyst, and the suitability of the model was verified through steady-state and transient mode. As a result of comparing the NO2/NOx ratio measured at the DOC outlet under the steady-state condition to two model values separately, the R2 was 0.9811 for the 3D map model and 0.9303 for the mathematical model. And in the case of the NO2/NOx ratio measured at the DPF outlet, the R2 was 0.9797 for the 3D map model and 0.935 for the mathematical model. It was confirmed that the R2 with the model value of the 3D Map of the mathematical model in the transient mode is 0.957, which shows high reliability.

Combined De-NOx Process with $NH_3$ SCR and Non-thermal Plasma Process for Removing NOx and Soot from Diesel Exhaust Gases

  • Chung, Kyung-Yul;Song, Young-Hoon;Oh, Sang-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.657-665
    • /
    • 2003
  • Combined De-NOx Process in which $NH_3$ SCR (Selective Catalytic Reduction) and non-thermal Plasma Process are simultaneously used, has been investigated with a pilot test facility. The pilot test facility treats the combustion flue gases exhausted from a diesel engine that generates 240 kW of electrical power. Test results show that up to 80 % of NOx (NO and NO2) can be removed at 100 - $200^{\circ}C$. None of conventional De-NOx techniques works under such low temperature range. In addition to NOx. the Pilot test results show that soot can be simultaneously treated with the present non-thermal plasma technique. The present pilot test shows that the electrical power consumption to operate the non-thermal plasma reactor is equivalent to 3 - 4 % of the electrical power generated by the diesel engine.

A Study on the Effects of NOx Reduction for the Tandem System (Tandem 시스템의 NOx 저감 효과에 관한 연구)

  • Nam Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.645-653
    • /
    • 2005
  • The effects of a WI(Water Injection) at the intake Pipe and an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated experimentally The water quantity was controlled by temperature of intake manifold and MAF(Manifold Air Flow). In addition, the urea quantify was controlled by NOx quantify and MAF. Effects of WI system, urea-SCR system and tandem system were investigated for with and without EGR(Exhaust Gas Recirculation). As the results. the SUF(Stoichiometric Urea Flow) and NOx map were obtained. In addition, NOx results can be visualized with engine speed and engine load. It was concluded. therefore, that the NOx reduction effects of the tandem system without the EGR were more than those with the EGR base engine.

Non-thermal Plasma and $NH_3$ SCR Hybrid Process for Treating Diesel Engine Exhaust (저온 플라즈마와 $NH_3$ SCR 복합공정을 이용한 디젤엔진 배기가스의 NOx 저감 기술)

  • Cha, Min-Suk;Lee, Jae-Ok;Kim, Yong-Ho;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.89-95
    • /
    • 2002
  • A hybrid De- NOx technique of non-thermal plasma and $NH_3$ SCR process has been investigated to remove NOx from 300 hp marine engine exhaust under the low temperature conditions, i.e. $100-200^{\circ}C$. Fundamental investigation with Diesel-like simulant gas was also conducted. The performance of the present technique has been demonstrated by treating real diesel exhaust gases, in which high contents of soot, water vapor, $SO_2$, NOx, and unburned HC are included. Detailed engineering data for evaluating the feasibility of the technique are provided in the present investigation.

  • PDF