• 제목/요약/키워드: Temperature SCR

검색결과 259건 처리시간 0.029초

저압 SCR을 위한 디젤발전기 배기가스 온도 변화 (Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR)

  • 홍철현;이창민;이상득
    • 해양환경안전학회지
    • /
    • 제27권2호
    • /
    • pp.355-362
    • /
    • 2021
  • L.P SCR의 촉매 반응을 위해 선박의 발전기용 4행정 디젤엔진의 배기가스 온도를 높게 설계 할 수밖에 없었다. 본 연구의 목적은 밸브개폐시기와 연료분사시기를 조정을 통한 배기가스의 온도 감소가 L.P SCR의 운전조건을 만족시키고 고온으로 인한 발전기 엔진의 사고를 예방하기 위함이었다. 배기가스 온도를 하강시키기 위해 캠샤프트의 각도를 조정하고 연료분사펌프의 Shim을 추가하였다. 그 결과 최대폭발압력은 12.8 bar 증가하였고 터보차저 출구온도 평균값은 13.3 ℃ 하강하였다. 터보차저 출구에서 SCR 입구까지의 열손실을 감안하더라도 L.P SCR 운전조건인 SCR 챔버 입구 온도인 290 ℃를 만족하였다. 배기가스 온도 하강을 통해 디젤발전기의 안전운전이 가능하게 한 연구였다.

온도상승에 따른 SCR 특성 변화에 관한연구 (Study of Changes of Characteristics of SCR in accordance with a rise in temperature)

  • 이영수;이간운;박문동;차재만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1199-1201
    • /
    • 2004
  • When The temperature of the joining of SCR rises major changes of characteristics are increase of leakage current, decrease of break-down voltage, and increase of turn off time. Because these changes promote the inferiority of SCR it(SCR) will get out of control and its life time will be shortened and finally it will be destroyed. In this paper, we will measure the changes of the characteristics in accordance with a rise in temperature. On the basis of the result we will find out the appropriate time to change SCR and we will use the result for the maintenance of SCR and increase of reliability of SCR.

  • PDF

ARIMA를 활용한 실시간 SCR-HP 밸브 온도 수집 및 고장 예측 (Real-time SCR-HP(Selective catalytic reduction - high pressure) valve temperature collection and failure prediction using ARIMA)

  • 이수환;홍현지;박지수;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.62-67
    • /
    • 2021
  • Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.

SNCR-SCR 하이브리드 시스템의 질소산화물 제거 특성 (Nitrogen Oxides Removal Characteristics of SNCR-SCR Hybrid System)

  • 차진선;박성훈;전종기;박영권
    • 공업화학
    • /
    • 제22권6호
    • /
    • pp.658-663
    • /
    • 2011
  • SNCR-SCR hybrid system은 SNCR에서 NOx를 제거한 뒤, SCR로 NOx를 추가 제거하는 시스템으로 NOx 제거 효율을 향상시키는 경제적인 시스템이다. 본 연구에서는 SNCR-SCR hybrid system에서 운전 변수가 질소산화물 저감 효율에 미치는 영향을 고찰하였다. SNCR을 optimum temperature ($900{\sim}950^{\circ}C$)보다 낮은 온도에서 운전할 경우, 추가적인 암모니아 주입 없이도 $NH_3$ slip을 이용한 NO의 추가적인 제거의 효과가 있었으나 $NH_3$ slip이 높은 것으로 나타났다. 그러나 그 이상의 온도에서는 고온에 의한 암모니아의 분해로 SCR에 의한 추가 제거의 효과를 얻지 못했다. 따라서 SNCR 공정을 optimum temperature에서 운전하는 것이 NO 제거 효율과 $NH_3$ slip 농도를 고찰하였을 때 가장 적절하였으며, $SR_{RES}$가 적정 수준으로 유지되도록 NSR을 조절하는 것이 중요한 운전 변수인 것으로 나타났다.

Low Temperature Performance and Compressive Strength Characteristics of an Extruded Homogeneous SCR

  • Seo, Choong-Kil;Oh, Kwang-Chul;Kim, Shin-Han
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.30-35
    • /
    • 2015
  • The purpose of this study is to identify the low temperature performance and strength characteristics of V-based extruded homogeneous SCR. The extruded catalyst and the coated catalyst showed 50% and 27% of NOx conversion performance respectively at about $210^{\circ}C$ of catalyst temperature, so the extruded SCR was higher in de-NOx performance than the coated SCR especially at a low temperature zone. The compressive strength of the Enhanced Extrusion #1, in which the content of promoters such as silica, clay, glass fiber and binder was optimized, was a 120% improvement compared to the Extrusion#1 catalyst, higher than the coated SCR.

Application of SNCR/SCR Combined process for effective operation of SCR Process

  • 최성우;최상기
    • 한국환경과학회지
    • /
    • 제12권1호
    • /
    • pp.47-54
    • /
    • 2003
  • This paper have examined the optimum combination of SNCR and SCR by varying SNCR injection temperature and NSR ratio along with SCR space velocity. NOx reduction experiments using a SNCR/SCR combined process have been conducted in simple NO/NH$_3$/O$_2$ gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% O$_2$. Commercial catalyst, sulfated V$_2$O$\_$5/-WO$_3$/TiO$_2$, was used for SCR NOx reduction. The residence time and space velocity were around 1.67 sec, 2,400 h$\^$-1/ and 6,000 h$\^$-1/ in the SNCR and SCR reactors, respectively. SNCR NOx reduction effectively occurred in a temperature window of 900-950$^{\circ}C$. About 88% NOx reduction was achieved with an optimum temperature of 950$^{\circ}C$ and NSR=1.5. SCR NOx reduction using commercial V$_2$O$\_$5/-WO$_3$-SO$_4$/TiO$_2$ catalyst occurred in a temperature window of 200-450$^{\circ}C$ 80-98% NOxreduction was possible with SV=2400 h$\^$-1/ and a molar ratio of 1.0-2.0. A SNCR/SCR(SV=6000 h$\^$-1/) combined process has shown same NOx reduction compared with a stand-alone SCR(SV=2400 h$\^$-1/) unit process of 98% NOx reduction. The NH$_3$-based chemical could routinely achieve SNCR/SCR combined process total NOx reductions of 98% with less than 5 ppm NH$_3$ slip at NSR ranging from about 1.5 to 2.0, SNCR temperature of 900$^{\circ}C$-950$^{\circ}C$, and SCR space velocity of 6000 h$\^$-1/. Particularly, more than 98% NOx reduction was possible using the combined process under the conditions of T$\_$SNCR/=950$^{\circ}C$, T$\_$SCR/=350$^{\circ}C$, 5% O$_2$, SV=6000 h$\^$-1/ and NH$_3$/NOx=1.5. A catalyst volume was about three times reduced by SNCR/SCR combined process compared with SCR process under the same controlled conditions.

배연탈질을 위한 저온 SCR 기술 도입에 따른 시나리오별 경제성 분석 (A Study on the Economic Analysis of Low-Temperature SCR Technology for NOx Reduction by Scenarios)

  • 홍성준;이유아;정순관
    • 에너지공학
    • /
    • 제29권2호
    • /
    • pp.10-22
    • /
    • 2020
  • 미세먼지 문제 해결에 대한 국민적 요구가 높아짐에 따라 정부에서는 강도 높은 미세먼지 관련 대책을 발표하고 있다. 그래서 최근에 미세먼지의 전구체 중에서 질소산화물을 제거하기 위한 배연탈질기술로서 선택적 촉매환원법(SCR)이 주목받고 있다. 본 연구에서는 미세먼지 관련 정부정책과 시장 및 기술개발 현황을 조사하고, SCR 기술이 산업체에 적용되는 경우를 Case별로 구분하여 시나리오별 경제성 분석을 실시하였다. 시나리오별 경제성 분석의 결과는 NPV로 산출하였으며, 탈질설비가 구축되어 있지 않은 기업(Case 1)이 일반 SCR 기술을 신규로 도입하는 경우(Scenario 1-1)와 저온 SCR 기술을 신규로 도입하는 경우(Scenario 1-2)를 분석하였다. 그리고 탈질설비가 이미 구축되어 있는 기업(Case 2)이 일반 SCR 기술을 그대로 사용하는 경우(Scenario 2-1)와 저온 SCR 기술로 대체하는 경우(Scenario 2-2)로 구분하여 분석하였으며, 모든 시나리오별 NPV 결과를 바탕으로 비교 분석을 실시하였다.

저온 플라즈마 및 암모니아 선택적 환원공정을 활용한 저온 탈질공정의 특성(I) (Characteristics of Low Temperature De-NOx Process with Non-thermal Plasma and NH3 Selective Catalytic Reduction (I))

  • 이재옥;송영훈
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.409-413
    • /
    • 2006
  • $150{\sim}200^{\circ}C$의 저온조건에 적용하기 위한 탈질공정으로서 저온 플라즈마 및 암모니아 SCR 공정을 복합시킨 탈질공정에 대한 실험적인 연구가 수행되었다. 실험결과 저온조건에서 일반적인 SCR 반응에 비해 매우 빠른 반응속도를 갖는 fast SCR 반응의 가능성을 확인할 수 있었으며, 효과적인 fast SCR 반응을 위해서는 SCR 반응기에 투입되는 $NO_{2}/NO_{x}$의 비가 0.3~0.5 범위에 있음을 알 수 있었다. 본 연구에서는 저온운전에 따른 암모늄염의 발생문제, 배기가스에 포함되어 있는 탄화수소가 공정에 미치는 영향, 유사한 공정과의 운전전력 비교 등 해당기술을 활용하기 위해 기본적으로 필요한 자료를 제공하고 있다.

Vanadium계 촉매의 NH3-SCR 저온 활성 영향 연구 (A Study on the Effect of Low-Temperature Activity on Vanadium Catalysts)

  • 여종현;홍성창
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.321-328
    • /
    • 2020
  • 본 실험은 상용 촉매인 V/W/TiO2와 V/Mo/TiO2 촉매를 비교하여 SCR 반응에서 저온 활성에 미치는 영향 연구를 진행하였다. NH3-SCR 반응에서의 중요한 영향을 미치는 NH3 산점과 산소의 영향을 확인하기 위해 NH3-TPD, DRIFT, H2-TPR 분석과 O2-on/off 실험을 진행하였다. 반응 활성이 높은 온도인 250 ℃와 활성 저하가 크게 나타나는 180 ℃에서 반응 활성에 미치는 영향을 분석하였다. 250 ℃에서는 SCR 반응에 참여하는 NH3 중, B산점과 L산점이 반응에 참여하는 것을 확인할 수 있었으며, 기상의 산소가 반응에 참여하여 재산화 영향에 크게 나타내는 것을 확인할 수 있었다. 하지만 180 ℃에서는 B산점의 영향이 저하되고, 기상의 산소에 의한 재산화의 영향이 적어 활성이 저하되는 것으로 판단된다.

디젤 NOx 후처리 장치에 있어서 암모니아 SCR 시스템 혼합영역 내 가스유동의 유입열 수치모델링에 관한 연구 (A Study on Numerical Modeling of the Induced Heat to Gaseous Flow inside the Mixing Area of Ammonia SCR System in Diesel Nox After-treatment Devices)

  • 배명환;샤이풀
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.897-905
    • /
    • 2008
  • Selective catalytic reduction(SCR) is known as one of promising methods for reducing $NO_x$ emissions in diesel exhaust gases. $NO_x$ emissions react with ammonia in the catalyst surface of SCR system at working temperature of catalyst. In this study, to raise the reacting temperature when the exhaust gas temperature is too low, a heater is located at the bottom of SCR reactor. At an ambient temperature, ammonia is radially injected perpendicular to the exhaust gas flow at inlet pipe and uniformly mixed in the mixing area after being impinged against the wall. To predict the turbulent model inside the mixing area of SCR system, the standard ${\kappa}\;-\;{\varepsilon}$ model is applied. This work investigates numerically the effects of induced heat on the gaseous flow. The results show that the Taylor-$G{\ddot{o}}rtler$ type vortex is generated after the gaseous flow impinges the wall in which these vortices influence the temperature distribution. The addition of heat disturbs the flow structure in bottom area and then stretching flow occurs. Vorticity strand is also formed when heat is continuously increased. Constriction process takes place, however, when a further heat input over a critical temperature is increased and finally forms shed vortex which is disconnected from the vorticity strand. The strong vortex restricts the heat transport in the gaseous flow.