• 제목/요약/키워드: Temperature Reduction

검색결과 4,524건 처리시간 0.029초

비이온 계면활성제의 마찰 및 열교환효율 저감 특성 연구 (Study on the Drag Reduction and Heat Transfer Efficiency Reduction of the Non-Ionic Surfactant)

  • 조성환;태춘섭
    • 설비공학논문집
    • /
    • 제19권2호
    • /
    • pp.133-141
    • /
    • 2007
  • The drag reduction (DR) and heat transfer efficiency reduction (HTER) of nonionic surfactant according to the fluid velocity, temperature and surfactant concentration were investigated experimentally. For this study, several kinds of new surfactant which contains amine-oxide and betaine were developed. And experimental apparatus equipped with two water storage tanks temperature controlled, pumps, testing pipe network, two flowmeters, two pressure gauges, heat exchanger, and data logging system was built. Results showed that existing alkyl ammonium surfactant (CTAC) had DR of $0.6{\sim}0.8$ for $1,000{\sim}2,000\;ppm$ in fluid temperature of $50{\sim}60^{\circ}C$ and had very low DR in fluid temperature over $70^{\circ}C$. And new amino oxide and betaine surfactant (SAOB) had lower DR in fluid temperature of $50{\sim}60^{\circ}C$ compared with CTAC but in fluid temperature of $70{\sim}80^{\circ}C$ DR was $0.6{\sim}0.8$ for 1$1,000{\sim}2,000\;ppm$.

Effect of High Temperature Treatment and Subsequent Oxidation anil Reduction on Powder Property of Simulated Spent Fuel

  • Song, Kun-Woo;Kim, Young-Ho;Kim, Bong-Goo;Lee, Jung-Won;Kim, Han-Soo;Yang, Myung-Seung;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.366-372
    • /
    • 1996
  • The simulated spent PWR fuel pellet which is corresponding to the turnup of 33,000 MWD/MTU is prepared by adding 11 fission-product elements to UO$_2$. The simulated spent fuel pellet is treated at 40$0^{\circ}C$ in air (oxidation), at 110$0^{\circ}C$ in air (high-temperature treatment), and at $600^{\circ}C$ in hydrogen (reduction). The product is treated through additional addition and reduction up to 3 cycles. Pellets are completely pulverized by the first oxidation, and the high-temperature treatment causes particle and crystallite to grow and surface to be smooth, and thus particle size significantly increases and surface area decreases. The reduction following the high-temperature treatment decreases much the particle size by means of the formation of intercrystalline cracks. The particle size decreases a little during the second oxidation and reduction cycle and then remains nearly constant during the third and fourth cycles. Surface area of pounder increases progressively with the repetition of oxidation and reduction cycles, mainly due to the formation of Surface cracks. The degradation of surface area resulting from high-temperature treatment is restored by too subsequent resulting oxidation and reduction cycles.

  • PDF

고온압연공정에서 강종 및 감면율 변화에 따른 마찰계수 변화 분석 (Analysis of Friction Coefficient Dependent on Variation of Steel Grade and Reduction Ratio in High Temperature Rolling Process)

  • 허종욱;이형직;나두현;이영석
    • 소성∙가공
    • /
    • 제18권5호
    • /
    • pp.410-415
    • /
    • 2009
  • Experimental and numerical studies were performed to examine the effect of material temperature and reduction ratio on friction coefficient during hot flat rolling. We carried out a single pass pilot hot flat rolling test at the temperatures range of $900{\sim}1200^{\circ}C$ and measured the spread of deformed material while reduction ratio varied from 20% to 40%. Materials used in this study were a high carbon steel and two alloy steels. The dimension of specimen used in hot rolling experiment was $50mm{\times}50mm{\times}300mm$. We performed a series of finite element simulation of the hot rolling process to compute the friction coefficient change in terms of steel grade and reduction ratio. Results showed that temperature dependency of friction coefficient is not noteworthy but the effect of reduction ratio on friction coefficient is quite large. For high carbon steel, friction coefficient at reduction ratio of 30% is lower than that at that of 20%. Meanwhile friction coefficient at reduction ratio of 40% was one and half times large compared with that at that of 20%. The effect of steel grade on friction coefficient was significant when reduction ration was large, e.g., 40%.

Hydrogenotrophic Sulfate Reduction in a Gas-Lift Bioreactor Operated at $9^{\circ}C$

  • Nevatalo, Laura M.;Bijmans, Martijn F. M.;Lens, Piet N. L.;Kaksonen, Anna H.;Puhakka, Jaakko A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.615-621
    • /
    • 2010
  • The viability of low-temperature sulfate reduction with hydrogen as electron donor was studied with a bench-scale gas-lift bioreactor (GLB) operated at $9^{\circ}C$. Prior to the GLB experiment, the temperature range of sulfate reduction of the inoculum was assayed. The results of the temperature gradient assay indicated that the inoculum was a psychrotolerant mesophilic enrichment culture that had an optimal temperature for sulfate reduction of $31^{\circ}C$, and minimum and maximum temperatures of $7^{\circ}C$ and $41^{\circ}C$, respectively. In the GLB experiment at $9^{\circ}C$, a sulfate reduction rate of 500-600 mg $l^{-1}d^{-1}$, corresponding to a specific activity of 173 mg ${SO_4}^{2-}g\;VSS^{-1}d^{-1}$, was obtained. The electron flow from the consumed $H_2$-gas to sulfate reduction varied between 27% and 52%, whereas the electron flow to acetate production decreased steadily from 15% to 5%. No methane was produced. Acetate was produced from $CO_2$ and $H_2$ by homoacetogenic bacteria. Acetate supported the growth of some heterotrophic sulfate-reducing bacteria. The sulfate reduction rate in the GLB was limited by the slow biomass growth rate at $9^{\circ}C$ and low biomass retention in the reactor. Nevertheless, this study demonstrated the potential sulfate reduction rate of psychrotolerant sulfate-reducing mesophiles at suboptimal temperature.

Characteristics of Thermal Performance on the Different Ambient Air Temperatures of Green Roof Plants

  • Han, Seung Won;Park, Joon Sung;Kim, Jae Soon;Jeong, Myung Il
    • 환경생물
    • /
    • 제34권4호
    • /
    • pp.272-280
    • /
    • 2016
  • Changes in land use and increase in urban energy consumption influence urban life. This study analyzed the characteristics and patterns of urban heat and presents management schemes to generate a comfortable and sustainable urban environment. The study aimed to demonstrate the positive effects of artificial ground greening on improving the microclimate through evapotranspiration using perennial herbs. We have designed a chamber that could control constant temperature and humidity, measure temperature reductions in each plant and changes in sensible heat and latent heat. This study identified Sedum kamtschaticum as the most effective plant in controlling temperature. At $22^{\circ}C$, $3.2^{\circ}C$ temperature reduction was observed, whereas four other plants showed a $1.5^{\circ}C$ reduction. At $25^{\circ}C$, $2.0^{\circ}C$ temperature reduction was observed. On the other hand, the use of Sedum sarmentosum resulted in the lowest effect. Zoysia japonica is the most commonly used ground covering plant, although the temperature reduction of Lysimachia nummularia was more effective at high temperature conditions. Sensible heat and latent heat were calculated to evaluate the thermal performance of energy. At a temperature >$30^{\circ}C$, L. nummularia and S. sarmentosum emitted high latent heat. In this study, we analyzed the thermal performance of green roof perennial plants; in particular, we analyzed the evapotranspiration and temperature reduction of each plant. Since the substrate depth and types, plant species, and seasonal change may influence temperature reduction and latent heat of green roofs, further studies are necessary.

수분사 Fe 분말의 산화물 및 이의 수소가스 환원거동 (Hydrogen Reduction Behavior of Oxide Scale in Water-atomized Iron Powder)

  • 신해민;백경호
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.422-428
    • /
    • 2014
  • In this study, the reduction kinetics and behaviors of oxides in the water-atomized iron powder have been evaluated as a function of temperature ranging $850-1000^{\circ}C$ in hydrogen environment, and compared to the reduction behaviors of individual iron oxides including $Fe_2O_3$, $Fe_3O_4$ and FeO. The water-atomized iron powder contained a significant amount of iron oxides, mainly $Fe_3O_4$ and FeO, which were formed as a partially-continuous surface layer and an inner inclusion. During hydrogen reduction, a significant weight loss in the iron powder occurred in the initial stage of 10 min by the reduction of surface oxides, and then further reduction underwent slowly with increasing time. A higher temperature in the hydrogen reduction promoted a high purity of iron powder, but no significant change in the reduction occurred above $950^{\circ}C$. Sequence reduction process by an alternating environment of hydrogen and inert gases effectively removed the oxide scale in the iron powder, which lowered reduction temperature and/or shortened reduction time.

DIESEL ENGINE NOx REDUCTION BY SNCR UNDER SIMULATED FLOW REACTOR CONDITIONS

  • Nam, Chang-Mo;Kwon, Gi-Hong;Mok, Young-Sun
    • Environmental Engineering Research
    • /
    • 제11권3호
    • /
    • pp.149-155
    • /
    • 2006
  • NOx reduction experiments were conducted by direct injection of urea into a diesel fueled, combustion-driven flow reactor which simulated a single engine cylinder ($966cm^3$). NOx reduction tests were carried out over a wide range of air/fuel ratios (A/F=20-40) using an initial NOx level of 530ppm, and for normalized stoichiometric ratios of reductant to NOx (NSR) of 1.5 to 4.0. The results show that effective NOx reduction with urea occurred over an injection temperature range of 1100 to 1350K. NOx reduction increased with increasing NSR values, and about a 40%-60% reduction of NOx was achieved with NSR=1.5-4.0. Most of the NOx reduction occurred within the cylinder and head section (residence time <40msec), since temperatures in the exhaust pipe were too low for additional NOx reduction. Relatively low NOx reduction is believed to be due to the existence of higher levels of CO and unburned hydrocarbons (UHC)inside the cylinder, and large temperature drops along the reactor. Injection of secondary combustible additives (diesel fuel/$C_2H_6$) into the exhaust pipe promoted further substantial NOx reduction (5%-30%) without shifting the temperature windows. Diesel fuel was found to enhance NOx reduction more than $C_2H_6$, and finally practical implications are further discussed.

SCM435 강의 고온마찰계수 계산 (Computation of High Temperature Friction Coefficient of SCM435 Steel)

  • 성중의;조상흠;이형직;이영석
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.243-249
    • /
    • 2011
  • In this study, an approach designed to compute high temperature friction coefficients for SCM 435 steel through a pilot hot rolling test and a finite element analysis, is proposed. Single pass pilot hot flat rolling tests with reduction ratios varying from 20 to 40% were carried out at temperatures ranging from 900 to $1200^{\circ}C$. In the proposed approach, the friction coefficient is calculated by comparing the measured strip spread and the roll force with the simulation results. This study showed that the temperature and reduction ratio had a significant influence on the friction coefficient. As both material temperature and reduction ratio become higher, the friction coefficient increases monotonically. This finding is not in agreement with the Ekelund model, which is widely used in the analysis of the hot rolling process. In the present work, the friction coefficient at a reduction ratio of 40% was found to be 1.2 times greater than that at a reduction of 30%. This higher friction coefficient means that an increment of the roll thrust force is expected at the next stand. Therefore, a roll pass designer must understand this phenomenon in order to adjust the reduction ratio at the stands while keeping the driving power, the roll housing structure and the work roll strength within the allowable range.

금속열환원 공정에서 반응온도가 니오븀 분말 특성에 미치는 영향 (The Effect of Reduction Temperature on the Characteristic Variation of Niobium Powder During Metallothermic Reduction Process)

  • 윤재식;이영미;황선호;김병일
    • 한국분말재료학회지
    • /
    • 제16권2호
    • /
    • pp.104-109
    • /
    • 2009
  • Niobium powder was made from potassium heptafluoroniobite ($K_2NbF_7$) as the raw material using sodium (Na) as a reducing agent based on the hunter process. The apparatus for the experiment was designed and built specifically for the present study. The niobium particle size greatly increased as the reduction temperature increased from $710^{\circ}C$ to $800^{\circ}C$. The particle size was fairly uniform, varying from $0.09{\mu}m$ to $0.4{\mu}m$ depending on the reduction temperatures. The niobium powder morphology and particle size are very sensitive to a reaction temperature in the metallothermic reduction process. The yield of niobium powder increased from 55% to 80% with a increasing a reaction temperature.

경량모듈형 옥상녹화시스템의 온도저감 및 열수지 평가 (Assessment of Temperature Reduction and Heat Budget of Extensive Modular Green Roof System)

  • 김세창;박봉주
    • 원예과학기술지
    • /
    • 제31권4호
    • /
    • pp.503-511
    • /
    • 2013
  • 본 연구는 돌나물과 한국잔디를 식재한 경량 모듈형 옥상녹화시스템의 온도저감과 열수지를 평가하였다. 식물생육은 초고와 피복율을 측정하였으며, 2012년 8월 2일부터 3일까지 48시간 동안 콘크리트와 옥상녹화 표면, 토양 속, 모듈 하부의 온도와 순복사, 증발산량을 측정하였다. 기온이 $34.6^{\circ}C$로 가장 높았던 8월 3일 15:00시의 표면온도는 콘크리트가 $57.5^{\circ}C$로 가장 높았으며, 그 다음으로 돌나물 $40.1^{\circ}C$, 한국잔디 $38.3^{\circ}C$의 순으로 옥상녹화 조성 시 큰 폭으로 온도가 저감되는 것으로 나타났다. 토양 속과 모듈 하부도 옥상녹화에 의한 온도저감 효과가 나타났으며, 한국잔디가 돌나물보다 온도저감 효과가 큰 것으로 나타났다. 콘크리트 표면과 비교하여 옥상녹화 최고 온도는 약 2시간 정도 지연되는 것으로 나타났다. 표면의 온도저감에는 식물종, 기온, 토양수분이 영향을 미치고, 모듈 하부의 온도저감에는 식물종, 기온, 토양수분, 표면온도가 유의하게 영향을 미친 것으로 나타났다. 열수지 분석결과, 현열은 콘크리트 표면이 가장 높았으며, 옥상녹화 시 감소하는 경향을 보였으며 잠열은 한국잔디가 돌나물보다 높았다. 따라서 온열환경 개선을 위해서는 한국잔디가 돌나물보다 옥상녹화 적용에 더 효과적임을 알 수 있었다.