• Title/Summary/Keyword: Temperature Reduction

Search Result 4,541, Processing Time 0.027 seconds

The Degradation of the Effect of Drag Reduction in Synthetic Polymer Solution (합성고분자 첨가제에 의한 마찰저항감소효과의 퇴화에 관한 연구)

  • 윤석만;최형진;김종보
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.163-171
    • /
    • 1998
  • Degradation of polymer additives is enhanced at higher temperature of the test solutions. The degradation of Co-polymer solution was investigated experimentally in a closed loop at the temperature of 6$0^{\circ}C$ and 8$0^{\circ}C$ with various polymer concentrations of 100, 200, 400, 600 ppm in order to see the effect of temperature and polymer concentration with time. The degradation effect were found to be more dependent on temperature than mechanical shear. The friction factor versus Reynolds number curves show that in the range of Reynolds number number 50,000~150,000 the friction was decreased as Reynolds number increased and the friction of solution at low temperature approached to Virk's maximum drag reduction asymptote. For constant flowrates and temperatures the degradation effect was found to be less likely in higher polymer concentration. For constant flowrates and polymer concentrations the degradation rates are affected mainly by temperature. At the temperature of 8$0^{\circ}C$ and polymer concentration of 100 ppm, drag reduction effect was disappeared after 4 hours. However, this thermal degradation could be avoided with additional materials such as surfactants which are supposed to enhance the bonding forces between polymer molecules.

  • PDF

Reduction in Indoor and Outdoor Temperature of Office Building with Cool Roof (쿨루프 적용에 따른 업무용 건물의 내·외부 온도 저감 효과)

  • Song, Bong-Geun;Kim, Gyeong-Ah;Park, Kyung-Hun
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.95-101
    • /
    • 2016
  • Purpose: This study aims to identify the effect of temperature reduction by the application of cool roof coatings to Changwon City Hall in South Gyeongsang Province. The indoor and outdoor temperatures of the cool roofing building were analyzed and compared to that of an existing building with green-colored roof coated with waterproof polyurethane. Method: The surface temperatures and reflectivity of rooftops, surface temperatures of ceilings and the interior, and outdoor temperature and humidity of the two aforementioned buildings were measured from June to September in 2014. The measurements were taken every 10 min. Result: The surface temperature of the building with the cool roof was lower by a maximum of $9^{\circ}C$ with the reflectivity of the rooftop at an average of 0.55, which is higher than that of the building with green polyurethane by approximately 0.3. The temperature of the ceiling inside the building with the cool roof was about $1{\sim}2^{\circ}C$ lower than that of the ordinary building. Also, the indoor temperature of the office with cool roof coatings was about $0.5{\sim}1.0^{\circ}C$ lower than that of the office with green-colored roofing building. The results show that cool roof coatings can lower the temperature of buildings. In the next research, the reduction in consumption of energy for air conditioning will be investigated by utilizing building energy simulation tools.

Evaluation of High Temperature Material Degradation for 12Cr Steel by Electrochemical Polarization Method (전기화학적 분극법을 이용한 12Cr강의 고온 재질열화도 평가)

  • Seo Hyon-Uk;Park Kee-Sung;Yoon Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.965-975
    • /
    • 2006
  • High pressure turbine blades are one of the key components in fossil power plants operated at high temperature. The blade is usually made of 12Cr steel and its operating temperature is above $500^{\circ}C$. Long term service at this temperature causes material degradation accompanied by changes in microstructures and mechanical properties such as strength and toughness. Quantitative assessment of reduction of strength and toughness due to high temperature material degradation is required for residual life assessment of the blade components. Nondestructive technique is preferred. So far most of the research of this kind was conducted with low alloy steels such as carbon steel, 1.25Cr0.5Mo steel or 2.25Cr1Mo steel. High alloy steel was not investigated. In this study one of the high Cr steel, 12Cr steel, was selected for high temperature material degradation. Electrochemical polarization method was employed to measure degradation. Strength reduction of the 12Cr steel was represented by hardness and toughness reduction was represented by change of transition temperature, FATT. Empirical relationships between the electrochemical polarization parameter and significance of material degradation were established. These relationship can be used for assessing the strength and toughness on the aged high pressure blade components indirectly by using the electrochemical method.

An Experimental Study on the Thermal Properties of High Strength Concrete in the Range of $40{\sim}100MPa$ at High Temperature (고온시 $40{\sim}100MPa$ 범위의 콘크리트 열적특성에 관한 실험적 연구)

  • Kim, Heung-Youl;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.425-428
    • /
    • 2006
  • In order to estimate the reduction of laodbearing capacity, followed by the attributive change of heat while high strength concrete structure is revealed on fire it is necessary to evaluate, it is necessary to evaluate the property of material under high temperature such as thermal conductivity, specific heat, compressive strength, modulus of rigidity and diminution figure. Therefore, this study is for the purpose of presenting evaluation data for the analysis of thermal behavior about the high strength concrete material under high temperature, through the experiment by manufacturing concrete(40, 50, 60, 80, 100 MPa) commonly used in the construction field. As a result of the study, in the case of physical attribute, it demonstrates a greater fluctuation of change than the one of 30 MPa concrete. In case of specific heat, the high strength concrete, shown the serious diminution between $500{\sim}600^{\circ}C$, presents the thermal change area corresponding to the change of high strength concrete. In compressive strength, regardless of intensity of concrete, all of them show the first intensity loss between normal temperature and $100^{\circ}C$, the dramatic loss beyond $400^{\circ}C$. The concrete weighing above 50 MPa shows a twice lower dramatic intensity loss than the one weighing $30{\sim}40MPa$. The concrete ranging from $60{\sim}80MPa$, shows the biggest diminution of modulus of elasticity under $400^{\circ}C$, which implies the structural unstability of temperature.

  • PDF

Dynamic Characteristics of a Urea SCR System for NOx Reduction in Diesel Engine

  • Nam, Jeong-Gil;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.235-242
    • /
    • 2007
  • This paper discusses dynamic characteristics of a urea-SCR (Selective Catalytic Reduction) system. The urea flow rate to improve NOx conversion efficiency is generally determined by parameters such as catalyst temperature and space velocity. The urea-SCR system was tested in the various engine operating conditions governing the raw NOx emission levels, space velocity. and SCR catalyst temperature. These experiments include cold-transients to determine catalyst light-off temperature and urea flow rate transients. Likewise. ammonia storage dynamics was also investigated. The cold-transient results indicate the light-off temperature of the catalysts used in these experiments was $200-220^{\circ}C$. The ammonia storage and urea flow rate transients all indicate very slow dynamics (on the order of seconds) which presents control challenges for mobile applications. The results presented in this paper should provide an excellent starting point in developing a functional in-vehicle urea-SCR system.

Effects of Chaff as Bulking Materials on Aerobic Composting of Food Wastes

  • Park, Seok-Hwan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.208-212
    • /
    • 2003
  • This study was performed to examine the effects of chaff as bulking materials on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Volume ratios of food wastes to chaff in reactor Control, Ch-1, Ch-2, Ch-3 and Ch-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The lowering of the volume ratio of food wastes to chaff resulted in the ascending of the highest reaction temperature and the elongation of the high temperature reaction period. The lowering of the volume ratio of food wastes to chaff resulted in the more fast time of pH ascending. The lowering of the volume ratio of food wastes to chaff resulted in the more fast consistency in the weight and volume reduction rates. Salinities were condensed by reaction days. The final salinity of Control was 2.79%, and the final range of salinities of chaff mixtures was 2.18 - 2.37%.

  • PDF

Effect of Chaff on Aerobic Composting of Food Wastes (왕겨가 음식물쓰레기의 호기성 퇴비화에 미치는 영향)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.56-61
    • /
    • 2003
  • This study was performed to examine the effects of chaff as a bulking material on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Volume ratios of food wastes to chaff in reactor of Control, Ch-1. Ch-2, Ch-3 and Ch-4 were 4:0, 4:1, 4:2, 4:3 and 4:4. respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The lowering of the volume ratio of food wasted to chaff resulted in the reaction at higher reaction temperature and the elongation of the high temperature reaction period. The lowering of the volume ratio of food wastes to chaff resulted in the more faster pH increase. The lowering of the volume ratio of food wastes to chaff resulted in the more faster reduction in the weight and the volume of wastes. Salinities were condensed by reaction days. The final salinity of Control and the final range of salinities of chaff mixtures were 2.79%, and 2.18~2.37%. respectively.

Microstructure Characteristics of Concrete Exposed to High Temperature (고온에 노출된 콘크리트 미세조직의 특성)

  • 태순호;이병곤
    • Fire Science and Engineering
    • /
    • v.12 no.4
    • /
    • pp.31-40
    • /
    • 1998
  • Very often, whether accidentally or intentionally set fire, according as building are elevated, varied or complicated day by day. It is of primary importance that we have a treatment of fire damaged structure. In general, strength and elasticity modulus of heated concrete are reduced. Product background of cement, sand and coarse aggregate differ from country to country, so that thermal behaviour of concrete make a difference in high temperature. To cope with demand, this paper is a study on relation to microstructure and strength reduction. In consequence of experiments, concrete exposed to high temperature are estimating the reduction of mechanical properties in comparison with microstructure characteristics which are abtained from the SEM/EDX, XRD and DSC-TG analysis of heated specimens under various temperature.

  • PDF

Production of White Zein Using Aqueous Ethanol (물-에탄올 혼합액을 이용한 백색 제인의 생산)

  • Kim, Kang Sung
    • Korean journal of food and cookery science
    • /
    • v.29 no.6
    • /
    • pp.647-652
    • /
    • 2013
  • Solubility profiles of zein and carotenoid in aqueous ethanol were studied. Zein showed minimum turbidity at the aqueous ethanol concentration of 87-92%, indicating least aggregations between protein molecules. Solubilities of zein and carotenoid increased linearly with the content of yellow zein up to 20% in the aqueous ethanol range of 60-95% tested. At room temperature of $20^{\circ}C$, zein showed maximum solubility in broad ethanol concentration ranges of 60-95%, while that for carotenoid was somewhat narrower with ethanol concentration range of 85-95%. However, at incubation temperature of $-20^{\circ}C$, solubilities of both carotenoid and zein were lowered, with dramatic reduction being exhibited at aqueous ethanol concentration of 60% for both compounds, while substantial reduction in solubility was shown at 95% ethanol by zein only. Zein was practically insoluble in absolute ethanol, regardless of temperature range tested, while carotenoid remained largely soluble, though there was pronounced decrease in solubility at the subfreezing temperature.

Sulfur Redox Equilibrium in Mixed Alkali Silicate Glass Melts

  • Kim, Ki-Dong;Hwang, Jong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • The dependence of sulfur redox behavior and its diffusivity on temperature and composition was studied in mixed alkali silicate melts by means of square wave voltammetry (SWV) at different frequencies in a temperature range of $1000^{\circ}C$ to $1400^{\circ}C$. The voltammograms showed two reduction peaks at high frequency but only one peak at low frequency. Irrespective of $K_2O/(Na_2O+K_2O)$, each peak potential due to reduction of $S^{6+}$ to $S^{4+}$ and $S^{4+}$ to $S^0$ moved toward a negative direction with temperature decrease, and the peak current showed a strong dependence on frequency at a constant temperature. However, the compositional dependence of the peak potential showed an inconsistent behavior with an increase of $K_2O$. The mixed alkali effect was not observed in sulfur diffusion. This inconsistency of both peak potential and diffusion for compositional dependence may be derived from the strong volatilization of sulfur in melts.