• 제목/요약/키워드: Temperature Modeling

검색결과 1,726건 처리시간 0.049초

Slip 현상을 줄이기위한 RTA(고속열처리) 장치 설계모델링 (RTA system design modeling to reduce slip)

  • 장현룡;한승윤;황호정
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.379-382
    • /
    • 1988
  • In this paper optimal light source arraies are calculated to reduce slips in RTA process. A two-channel temperature controller is constructed on a board using IBM - XT to improve the temperature uniformity. The proposed RTA structure has also advantage of power dissipation.

  • PDF

탄소 방적사의 열전도도 모델링 (Modeling of Thermal Conductivity of Carbon Spun Yarn)

  • 조영준;설인환;강태진;박종규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.186-189
    • /
    • 2004
  • A thermal model of carbon spun yam is presented. The unit cell of spun carbon yam is divided into a number of volume elements and the local material properties have been given to each element. By using Finite Difference Method (FDM), temperature distribution in the unit cell can be obtained. Effective thermal conductivity of the spun carbon yam unit cell is calculated using the temperature distribution and thermal conductivities of local elements.

  • PDF

An Experimental Study on the Temperature Distribution in IRWST

  • Kim, Sang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.820-829
    • /
    • 2004
  • The In-Containment Refueling Water Storage Tank (IRWST), one of the design improvements applied to the APR -1400, has a function to condense the high enthalpy fluid discharged from the Reactor Coolant System (RCS). The condensation of discharged fluid by the tank water drives the tank temperature high and causes oscillatory condensation. Also if the tank cooling water temperature approaches the saturated state, the steam bubble may escape from the water uncondensed. These oscillatory condensation and bubble escape would burden the undue load to the tank structure, pressurize the tank, and degrade its intended function. For these reasons simple analytical modeling and experimental works were performed in order to predict exact tank temperature distribution and to find the effective cooling method to keep the tank temperature below the bubble escape limit (93.3$^{\circ}C$), which was experimentally proven by other researchers. Both the analytical model and experimental results show that the temperature distributions are horizontally stratified. Particularly, the hot liquid produced by the condensation around the sparger holes goes up straight like a thermal plume. Also, the momentum of the discharged fluid is not so strong to interrupt this horizontal thermal stratification significantly. Therefore the layout and shape of sparger is not so important as long as the location of the sparger hole is sufficiently close to the bottom of the tank. Finally, for the effective tank cooling it is recommended that the locations of the discharge and intake lines of the cooling system be cautiously selected considering the temperature distribution, the water level change, and the cooling effectiveness.

UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발 (Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road))

  • 박문수;주승진;손영태
    • 대기
    • /
    • 제24권4호
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

저온기 딸기 고설 수경재배시 온실기온에 따른 배지내 온도강하 모델 개발 (Modeling of Medium Temperature Drops of the Elevated-bench Hydroponics for Strawberry Cultivation during Low Temperature Season)

  • 박재완;하유신;김기동;박대흠;이기명;전하준;권순구;최원식;정성원
    • 생물환경조절학회지
    • /
    • 제19권3호
    • /
    • pp.123-129
    • /
    • 2010
  • 본 연구는 저온기 딸기 고설 수경재배 방식의 배지 내 온도 관리를 위한 기초자료를 얻기 위하여 베드 2종류(플랜트형, V형), 배지 4종류(왕겨, 펄라이트, 왕겨 80% + 피트모스20%, 휠라이트80% + 피트모스20%), 멀칭 2종류(멀칭무, 멀칭유)의 처리구별로 온실기온 4수준(1.5, 3.2, 5.0, $6.7^{\circ}C$)에 따른 배지 내 온도의 변화를 측정하였다. 그 결과, 베드의 온도강하는 V형 베드가 플랜트형 베드보다 평균 $1.2{\sim}20^{\circ}C$ 느리게 나타났으며, V형 베드의 보온 효과가 크게 나타났다. 배지의 종류별로는 왕겨 80%의 배지보다 펄라이트 80%의 배지에서 멀칭의 유무에 관계없이 배지온 강하가 약 $7^{\circ}C$ 느리게 나타났다. 멀칭유무별로는 멀칭한 경우에서 온도강하가 느리게 나타나 멀칭을 하는 것이 배지온 유지에 유리하였다. 보온효과가 큰 V형 베드, 펄라이트80% + 피트모스20% 배지, 멀칭한 경우의 배지온 강하 모텔은 f(x) = -0.2656 + 0.1345x로 나타났으며, 개발된 모델을 이용하면 저온기에서 야간의 온실 내 기온에 따른 배지내의 온도강하를 예측할 수 있을 것으로 판단되었다.

습구흑구온도지수 모델링을 통한 옥외 건설 현장의 고열 노출수준 추정 (Estimation of Extreme Heat Exposure at Outdoor Construction Sites through Wet Bulb Globe Temperature Modeling)

  • 신새미;이혜민;기노성;채정수;변상훈
    • 한국산업보건학회지
    • /
    • 제32권4호
    • /
    • pp.402-413
    • /
    • 2022
  • Objectives: In this study, the scale of exceeding the extreme heat exposure standard at the construction site was estimated using the nationally approved statistical data and wet bulb globe temperature modeling method. By comparing and analyzing the modeling results with the existing work environment monitoring results, the risk of heat exposure at outdoor construction sites was considered. Methods: Using the coordinates of second level administrative districts and meteorological observatories as the key, the automated synoptic observing system data and building permit data for 2021 were matched. The wet-bulb temperature was obtained using Stull's formula, and the globe temperature was obtained using the TgKMA2006 model. WBGT was calculated using these. Excess rates were obtained compared to exposure limits for heavy work-continuous work and moderate work-25% rest. It was compared with the results of the work environment monitoring in 2020. Results: As a result, 1,827,536 cases were estimated for 11,052 workplaces in one year. This is much higher than the 5,116 cases of 3818 workplaces of the existing work environment monitoring results. It is confirmed that the exposure limit was exceeded in 10.6~24.0% of the entire period and 70.2~84.1% of the peak period of the heat wave. It is very high compared to 0.9% of the existing work environment monitoring result. Conclusions: It is necessary to improve the system of monitoring and statistics related to extreme heat. Additional considerations are needed regarding WBGT estimation methods, meteorological data, and evaluation time. Various follow-up risk assessment studies for other industries and time series need to be continued.

정지위성 해색 촬영기의 열모델링 기술 (THERMAL MODELING TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER)

  • 김정훈;전형열;한조영;김병수
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.28-34
    • /
    • 2010
  • Conductive and radiative thermal model configurations of an imager of a geostationary satellite are presented. A two-plane method is introduced for three dimensional conductive coupling which is not able to be treated by thin shell plate thermal modeling technique. Especially the two-plane method is applied to massive matters and PIP(Payload Interface Plate) in the imager model. Some massive matters in the thermal model are modified by adequate correction factors or equivalent thickness in order to obtain the numerical results of thermal modeling to be consistent with the analytic model. More detailed nodal breakdown is specially employed to the object which has the rapid temperature gradient expected by a rule of thumb. This detailed thermal model of the imager is supposed to be used for analyses and test predictions, and be correlated with the thermal vacuum test results before final in-flight predictions.

Structural modeling of actuation of IPMC in dry environment: effect of water content and activity

  • Swarrup, J. Sakthi;Ranjan, Ganguli;Giridhar, Madras
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.553-565
    • /
    • 2017
  • Structural modeling of unencapsulated ionic polymer metal composite (u-IPMC) actuators that are used for flapping the insect scale-flapping wing of micro air vehicles (FMAV) in dry environmental conditions is carried out. Structural modeling for optimization of design parameters for retention of water, maximize actuation performance and to study the influence of water activity on the actuation characteristics of u-IPMC is explored for use in FMAV. The influence of equivalent weight of Nafion polymer, cations, concentration of cations, pre-treatment procedures on retention of water of u-IPMCs and on actuation parameters, flapping angle, flexural stiffness and actuation displacement are investigated. IPMC designed with Nafion having equivalent weight 900-1100, pre-heated at $30^{\circ}C$ and with sodium as the cations is promising for optimum retention of water and actuation performance. The actuation parameters while in operation in dry and humid environment with varying water activity can be tuned to desirable frequency, deflection, flap angle and flexural stiffness by changing the water activity and operational temperature of the environment.

GOTHIC-3D APPLICABILITY TO HYDROGEN COMBUSTION ANALYSIS

  • LEE JUNG-JAE;LEE JIN-YONG;PARK GOON-CHERL;LEE BYUNG-CHUL;YOO HOJONG;KIM HYEONG-TAEK;OH SEUNG-JONG
    • Nuclear Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.265-272
    • /
    • 2005
  • Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling oflarge- and small-scale facilities was introduced through sensitivity studies on cell size and bum modeling parameters. Use of a turbulent bum option of the eddy dissipation concept enabled scale-free applications. Lowering the bum parameter values for the flame thickness and the bum temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default bum modeling parameters for large-scale facilities. However, the code needs further modifications of its bum modeling parameters to be applied to either small-scale facilities or extremely fast transients.