• Title/Summary/Keyword: Temperature Modeling

Search Result 1,719, Processing Time 0.033 seconds

A Study On The Thermal Movement Of The Reactor Coolant System For PWR (가압 경수로의 냉각재 계통 열팽창 거동에 관한 연구)

  • Yoon, Ki-Seok;Park, Taek sang;Kim, Tae-Wan;Jeon, Jang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.393-402
    • /
    • 1995
  • The structural analysis of the reactor coolant system mainly consist of too fields. The one is the static analysis considering the impact of pressure and temperature built up during normal operation. The other is the dynamic analysis to estimate the impact of postulated events such as the seismic loads or postulated branch line pipe breaks event. Since the most important goal of the RCS structural analysis is to prove the safety of the RCS during normal operation or postulated events, a widely proven theory having enough conservatism is adopted. The load occurring on the RCS during normal operation is considered as the basic design loading condition throughout whole plant life time. The most typical characteristic of the RCS during normal operation is the thermal expansion of the RCS caused by reactor coolant with high temperature and pressure. Therefore, the exact estimation on the thermal movement of the RCS is needed to get more clear understanding on the thermal movement behavior of the RCS. In this study, the general structural analysis concept and modeling method to evaluate the thermal movement of the RCS under the normal plant operation condition are presented. To discuss the validation of the suggested analysis, analysis results are compared with the measured data which ore referred from the standardized 1000 MWe PWR plant under construction.

  • PDF

Effect of the HVAC Conditions on the Smoke Ventilation Performance and Habitability for a Main Control Room Fire in Nuclear Power Plant (원자력발전소 주제어실 화재 시 공조모드가 배연성능 및 거주성에 미치는 영향 분석)

  • Kim, Beom-Gyu;Lim, Heok-Soon;Lee, Young-Seung;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This study evaluated the habitability of operators for main control room fires in nuclear power plants. Fire modeling (FDS v.6.0) was utilized for a fire safety assessment so that it could determine the performance of the smoke ventilation and operator habitability with the main control room. For this study, it categorized fire scenarios into three cases depending on the conditions in the HVAC system. As a result of fire modelling, it showed that Case 1 (with HVAC) would give rise to the worst situation associated with the absolute temperature, radiative heat flux, optical density, and smoke layer height as deliberating the habitability and smoke ventilation. On the other hand, it showed that Cases 2 (w/o HVAC) and 3 can maintain much safer situations than Case 1. In the case of temperature at 820 s, Cases 2 and 3 were up to approximately 63% greater than Case 1 in the wake of ignition. In addition, the influence of radiative heat flux of Case 1 was even larger than Cases 2 and 3. That is, the radiative heat fluxes of Cases 2 and 3 were approximately 68% higher than Case 1. Furthermore, when it comes to considering the optical density, Case 1 was approximately 93% greater than Cases 2 and 3. Accordingly, it expected that the HVAC system can influence a the performance on the smoke ventilation that can be sustainable for operator habitability. On the other hand, it revealed an inconsecutive pattern for the smoke layer height of Cases 2 and 3 because supply vents and exhaust vents were installed within the same surface.

The Accelerated Life Test of 2.5 Inch Hard Disk In The Environment of PC using (PC 사용 환경의 2.5 인치 하드디스크의 가속 수명 시험)

  • Cho, Euy-Hyun;Park, Jeong-Kyu;Seo, Hui-Don
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • In order to estimate the life of 2,5 inch HDD which is adopted by PC environment, make the test plan which reflect the failure mode of market, make the test model of accelerated life test which reflect the stress of temperature. after an analysis of the environment of PC using, test procedure was decided that operation was write 50 % and read 50 %, and then access method was sequential 50 % and random 50%. The acceleration life test was executed on condition that temperature was $50^{\circ}C$ and $60^{\circ}C$, performance was 95 % in max performance, test time was 1000 hours. by the test of goodness of fit of anderson-darling of the failure data during test, it was confirmed that the distribution of failure fellow weibull. test for shape and scale was equal, and shape parameter was 0.7177, characteristic life was 429434 hours at normal user condition($30^{\circ}C$) by the analysis of weibull-arrhenius modeling. It made no difference about the statistics when equality test was executed. The activation energy was 0.2775eV. In analyzing between the failure samples of acceleration test and the samples of market return even though there is detail difference about the share of failure mode, the rank of share was almost same. This study suggest the test procedure of acceleration test of 2.5 inch HDD in PC using environment, and help the life estimation at manufacture and user.

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC (BIOME-BGC 모형을 이용한 국내 소나무 고사의 기후 및 토심 영향 분석)

  • Kang, Sinkyu;Lim, Jong-Hwan;Kim, Eun-Sook;Cho, Nanghyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • A process-based ecosystem model, BIOME-BGC, was applied to simulate seasonal and inter-annual dynamics of carbon and water processes for potential evergreen needleleaf forest (ENF) biome in Korea. Two simulation sites, Milyang and Unljin, were selected to reflect warm-and-dry and cool-and-wet climate regimes, where massive diebacks of pines including Pinus densiflora, P. koraiensis and P thunbergii, were observed in 2009 and 2014, respectively. Standard Precipitation Index (SPI) showed periodic drought occurrence at every 5 years or so for both sites. Since mid-2000s, droughts occurred with hotter climate condition. Among many model variables, Cpool (i.e., a temporary carbon pool reserving photosynthetic compounds before allocations for new tissue production) was identified as a useful proxy variable of tree carbon starvation caused by reduction of gross primary production (GPP) and/or increase of maintenance respiration (Rm). Temporal Cpool variation agreed well with timings of pine tree diebacks for both sites. Though water stress was important, winter- and spring-time warmer temperature also played critical roles in reduction of Cpool, especially for the cool-and-wet Uljin. Shallow soil depth intensified the drought effect, which was, however, marginal for soil depth shallower than 0.5 m. Our modeling analysis implicates seasonal drought and warmer climate can intensify vulnerability of ENF dieback in Korea, especially for shallower soils, in which multi-year continued stress is of concern more than short-term episodic stress.

Biosorption of Pb and Cd by Indigenous Bacteria Isolated from Soil Contaminated with Oil and Heavy Metals (유류와 중금속으로 오염된 토양에서 분리한 미생물의 Pb와 Cd 생물흡착 특성)

  • Kim, Sang-Ho;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.427-434
    • /
    • 2009
  • Indigenous bacterium which shows a tolerance to high metal toxicity was isolated from soil concomitantly contaminated with oil and heavy metals. The characteristics of the bacterium for Pb and Cd biosorption was investigated under the various experimental conditions such as bacterial growth phase, the initial metal concentration, the input biomass amount, temperature and pH. The Langmuir adsorption isotherm modeling was described to know the capacity and intensity of biosorption. The low initial concentration of heavy metals and high biomass has a maximum heavy metal removal efficiency, but biosorption capacity of Pb and Cd has different values. Biosorption efficiency was highest in the end of the microbial growth stage and under pH 5~9 condition, but was less affected by temperature variation of 25~$35^{\circ}C$. The maximum biosorption capacity for Pb and Cd was 62.11 and 192.31 mg/g, respectively and each $R^2$ was calculated as 0.71 and 0.98 by applying Langmuir isothermal adsorption equation. Biosorption for Cd was considered as monomolecular adsorption to single layer on the surface of cells, whereas biosorption for Pb was considered as accumulation process into the cell by the microbial metabolism and precipitation reaction with anion of bacteria.

Predicting the Potential Distribution of Pinus densiflora and Analyzing the Relationship with Environmental Variable Using MaxEnt Model (MaxEnt 모형을 이용한 소나무 잠재분포 예측 및 환경변수와 관계 분석)

  • Cho, NangHyun;Kim, Eun-Sook;Lee, Bora;Lim, Jong-Hwan;Kang, Sinkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.47-56
    • /
    • 2020
  • Decline of pine forests happens in Korea due to various disturbances such as insect pests, forest fires and extreme climate, which may further continue with ongoing climate change. For conserving and reestablishing pine forests, understanding climate-induced future shifts of pine tree distribution is a critical concern. This study predicts future geographical distribution of Pinus densiflora, using Maximum Entropy Model (MaxEnt). Input data of the model are locations of pine tree stands and their environmental variables such as climate were prepared for the model inputs. Alternative future projections for P. densiflora distribution were conducted with RCP 4.5 and RCP 8.5 climate change scenarios. As results, the future distribution of P. densiflora steadily decreased under both scenarios. In the case of RCP 8.5, the areal reductions amounted to 11.1% and 18.7% in 2050s and 2070s, respectively. In 2070s, P. densiflora mainly remained in Kangwon and Gyeongsang Provinces. Changes in temperature seasonality and warming winter temperature contributed primarily for the decline of P. densiflora., in which altitude also exerted a critical role in determining its future distribution geographic vulnerability. The results of this study highlighted the temporal and spatial contexts of P. densiflora decline in Korea that provides useful ecological information for developing sound management practices of pine forests.

Mineral Carbonation of Serpentinite: Extraction, pH swing, and Carbonation (사문암(Serpentinite)을 이용한 광물탄산화: Mg 추출과 pH swing 및 탄산화)

  • LEE, Seung-Woo;Won, Hyein;Choi, Byoung-Young;Chae, Soochun;Bang, Jun-Hwan;Park, Kwon Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.205-217
    • /
    • 2017
  • Mineral carbonation by indirect method has been studied by serpentinite as cation source. Through the carbonation of $CO_2$ and alkaline earth ions (calcium and magnesium) from serpentinite, the pure carbonates including $MgCO_3$ and $CaCO_3$ were synthesized. The extraction solvent used to extract magnesium (Mg) was ammonium sulfate ($(NH_4)_2SO_4$), and the investigated experimental factors were the concentration of $(NH_4)_2SO_4$, reaction temperature, and ratio of serpentinite to the extraction solvent. From this study, the Mg extraction efficiency of approximately 80 wt% was obtained under the conditions of 2 M $(NH_4)_2SO_4$, $300^{\circ}C$, and a ratio of 5 g of serpentinite/75 mL of extraction solvent. The Mg extraction efficiency was proportional to the concentration and reaction temperature. $NH_3$ produced from the Mg extraction of serpentinite was used as a pH swing agent for carbonation to increase the pH value. About 1.78 M of $NH_3$ as the form of $NH_4{^+}$ was recovered after Mg extraction from serpentinite. And, the main step in Mg extraction process of serpentinite was estimated by geochemical modeling.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

Simulation of Past 6000-Year Climate by Using the Earth System Model of Intermediate Complexity LOVECLIM (중간복잡도 지구시스템모델 LOVECLIM을 이용한 과거 6천년 기후 변화 모의)

  • Jun, Sang-Yoon
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.87-103
    • /
    • 2019
  • This study introduces the overall characteristics of LOVECLIM version 1.3, the earth system model of intermediate complexity (EMIC), including the installation and operation processes by conducting two kinds of past climate simulation. First climate simulation is the equilibrium experiment during the mid-Holocene (6,000 BP), when orbital parameters were different compared to those at present. The overall accuracy of simulated global atmospheric fields by LOVECLIM is relatively lower than that in Coupled Model Intercomparison Project phase 5 (CMIP5) and Paleoclimate modelling Intercomparison Project phase 3 (PMIP3) simulations. However, surface temperature over the globe, the 800 hPa meridional wind over the mid-latitude coastal region, and the 200 hPa zonal wind from LOVECLIM show similar spatial distribution to those multi-model mean of CMIP5/PMIP3 climate models. Second one is the transient climate experiment from mid-Holocene to present. LOVECLIM well captures the major differences in surface temperature between preindustrial and mid-Holocene simulations by CMIP5/PMIP3 multi-model mean, even though it was performed with short integration time (i.e., about four days in a single CPU environment). In this way, although the earth system model of intermediate complexity has a limit due to its relatively low accuracy, it can be a very useful tool in the specific research area such as paleoclimate.