• Title/Summary/Keyword: Temperature Jump

Search Result 87, Processing Time 0.024 seconds

A real scale test on performance of water spray systems in tunnel fire (터널화재시 물분무소화설비의 성능에 대한 실대시험)

  • Park, Kyung-Hwan;So, Soo-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.341-347
    • /
    • 2010
  • The performance of water spray system installed to reduce risks of tunnel fire is investigated by a real tunnel fire test. In case of A class fire, Pool fire, and car fire, the nozzle of water spray has had a marvelous effect to reduce the temperature of hot smoke. And it is verified to have remarkable cooling effects when there is the air flow in a tunnel. Though this results, water spray system will be able to prevent a fire jump to decrease the air temperature in a tunnel and to protect tunnel facilities by the fire control.

Electric Properties of the Laminate Type PTC(Positive Temperature Coefficient of Resistance) Thermistor According to Polymer Blowing Agent (유기발포제에 따른 적층형 PTC(Positive Temperature Coefficient of Resistance) 써미스터의 전기적 특성)

  • Lee, Mi-Jai;Hwang, Jong-Hee;Kim, Jin-Ho;Lim, Tae-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.658-663
    • /
    • 2012
  • The electrical properties of a laminated SMD type PTC thermistor for microcircuit protection were investigated as a function of polymer blowing agent addition. Green ceramics for multilayered $BaTiO_3$-based PTCRs were formed by doctor blade method of barium titanate powders; we successfully laminated the sintered ceramic chips to obtain 10 layer chip PTCRs with PTC effect. The sintered density increases with increasing sintering temperature. The electrical properties of the sintered samples were strongly dependent on the calcination and addition of a polymer blowing agent. When $BaTiO_3$ powders containing 0.2 mol% of $Y_2O_3$ were calcined at $1000^{\circ}C$ for 2 hrs, the resistivity jump was of 1-2 orders of magnitude. The resistivity at room temperature increases according to the polymer blowing agent addition. Also, the sample using the calcined powder showed a lower resistivity than that of the sample prepared using powders without calcinations. With an increase in the OBSH, the magnitude of the resistivity jumped as a function of the temperature increase. The resistivity of the sintered bodies after the addition of 0.5 wt% polymer blowing agent at $1290^{\circ}C$ for 2 h was shown to be about $8.5{\Omega}{\cdot}cm$; the jump order of the sintered bodies was shown to be on the order of $10^2$.

Impedance Analysis of Resistance Anomaly of $BaTiO_3$ based PTC thermistor

  • Chun, Myoung-Pyo;Myoung, Seong-Jae;Nam, Joong-Hee;Cho, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.182-182
    • /
    • 2009
  • The effect of Re-oxidation on the PTCR properties of Sm-doped barium titanate ceramics was investigated by means of impedance spectroscopy. Electrical properties such as resistance vs. temperature, I-V curve were measured and microstructure was observed with SEM photography. Sample was fabricated with thick film process such as tape casting of green sheet, screen printing of electrode pattern, stacking, firing in reduced atmosphere and re-oxidation, etc. As the temperature of re-oxidation increases, resistance jump as a function of temperature enhances but resistance at room temperature increases. These behavior of resistance as a function of temperature, dependent on the re-oxidation condition, is analyzed with Cole-Cole impedance plot and is shown to be related with the degree of oxidation of grain boundary regardless of grain core during re-oxidation process of sample.

  • PDF

Evaluation of Material Property of Asphalt Pavement with Temperature using HWAW method (HWAW방법을 사용한 아스팔트 포장층의 온도에 따른 물성치 변화 결정)

  • Park, Hyung-Choon;Lee, Mie-Yea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1417-1421
    • /
    • 2008
  • Temperature variation affect the response of asphalt pavement and should be considered in the evaluation of performance of the pavement. In this paper, HWAW method is applied to evaluate shear wave velocity(or shear modulus) of the asphalt pavement with temperature. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. This method minimize effect of noise and is not affected by mode jump effect which cause erroneous result when surface wave method is applied to pavement evaluation. In order to estimate the applicability of HWAW method, field tests were performed in 1 site and preliminary correlation between shear wave velocity(shear modulus) and asphalt pavement average temperature.

  • PDF

The Study of the Variation of Strain Rate Sensitivity Index depending on the Strain and Microstructural Observations of AZ31 Mg Alloy Sheet (변형율에 따른 AZ31 합금의 변형율 속도 민감도 지수 변화와 미세조직 특성에 관한 연구)

  • Kim, D.O.;Kang, C.W.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.498-503
    • /
    • 2011
  • The strain rate sensitivity index, m, plays an important role in plastic deformation at elevated temperatures. It is affected by strain rate, temperature, and the microstructure of the material. The strain rate sensitivity index has been used as a constant in numerical analysis of plastic forming at a specified strain rate and temperature. However, the value of m varies as deformation proceeds at an elevated temperature and a certain strain rate. Thus, in this present study, the value of m has been characterized as a function of strain by multiple tensile jump tests for AZ31 magnesium alloy sheet, and the variation of m has been discussed in conjunction with the microstructural observations before and after deformation. The experimental results show that the variation of m is dependent on the temperature and strain rate. Grain growth with dynamic recrystallization also affects the variation of m.

The PTCR Characteristics of the Laminated SMD-Type PTC Thermistor as a Function of the Heat Treatment Conditions (적층 SMD형 PTC 써미스터의 열처리 조건에 따른 PTCR 특성 변화)

  • Lee, Mi-Jai;Jang, Jae-Woon;Lim, Tae-Young;Park, Seong-Chul;Song, Jun-Baek;Han, Cheong-Hwa
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.432-437
    • /
    • 2012
  • Electrical properties of the laminated SMD-type PTC thermistor for microcircuit protection were investigated as a function of calcination and sintering temperature. $BaTiO_3$ with $Y_2O_3$ and $MnO_2$ were calcined at 1000 to $1150^{\circ}C$ for 2h and the laminated SMD-type PTC thermistor was sintered at 1350 to $1400^{\circ}C$ for 2h in a reduced atmosphere (1% $H_2/N_2$). Sintered density of the sample was dependent on the calcination and sintering temperature. Electrical properties of the sintered samples were strongly dependent on the densities of samples. For the samples with density below 4.6 g/$cm^3$, the insulator characteristics were observed, while PTC jump characteristics (R150/R30) were disappeared for the sample with density above 5.05 g/$m^3$. Optimal PTC characteristics were obtained for the sintered samples with density of 5.05 g/$m^3$. The laminated SMD-type PTC thermistor prepared by calcination at $1100^{\circ}C$ for 2h and sintering at $1270^{\circ}C$ for 2h showed the room temperature resistivity of $11{\Omega}{\cdot}cm$ and PTC jump characteristics of $10^2$ order.

Computation of Ionic Conductivity at NASICON Solid Electrolytes (II) Effects of mid-Na Sites on Na1-Na2 Conduction Paths (NASICON 고체 전해질의 이온 전도도 계산 (II) Na1-Na2 전도 경로에 미치는 mid-Na의 영향)

  • 최진삼;서양곤;강은태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1292-1300
    • /
    • 1995
  • The ionic conductivity of NASICON solid electrolytes was simulated by using Monte Carlo Method (MCM). There were included two conduction paths: (1) Na1-Na2 and (2) Na1-Na2 including Na2-Na2. We assumed that mid-Na ions provde an additional driving force for Na mobile ions due to the interionic repulsion between Na1 and Na2 ions. The inflection point of vacancy availability factor, V has been shown at nearby x=2, the maximum mid-Na ions. The inflection point of vacancy availability factor, V has been shown at nearby x=2, the maximum mid-Na sites are occupied. The effective jump frequency factor, V has been shown at nearby x=2, the maximum mid-Na sites are occupied. The effective jump frequency factor, W increased rapidly with the composition at low temperature, but decreased at high temperature region. On Na1-Na2 conduction path, the minimum of charge correlation factor, fc and the maximum of $\sigma$T were appeared at x=2.0. this indicated that mid-Na ions affect on the high ionic conductivity behavior. At the whole range of NASICON composition, 1n $\sigma$T vs. 1/T* plots have been shown Arrhenius behavior but 1n (VWFc) vs. 1/T* have been shown the Arrhenius type tendency at x=2, which mid-Na is being the maximum. The results of MCM agreed with the experimental one when the chosen saddle point value was 6$\varepsilon$ : 3$\varepsilon$. Here the calculated characteristic parameter of materials, K and the phase transition temperature were -4.001$\times$103 and 178$^{\circ}C$ (1/T*=1.92, 1000/T=2.22), respectively.

  • PDF

Microstructure and Positive Temperature Coefficient of Resistivity Characteristics of Na2Ti6O13-Doped 0.94BaTiO33-0.06(Bi0.5Na0.5)TiO3 Ceramics (Na2Ti6O13를 도핑한 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 세라믹스의 미세구조와 Positive Temperature Coefficient of Resistivity 특성)

  • Cha, Yu-Joung;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Wu-Young;Kim, Dae-Joon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.575-580
    • /
    • 2010
  • The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1 mol%$Na_2Ti_6O_{13}$ doped $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$ (BBNT-NT001) ceramics sintered at various temperatures from $1200^{\circ}C$ to $1350^{\circ}C$ were investigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature ($T_C$). Resulting thermistors showed a perovskite structure with a tetragonal symmetry. When sintered at $1200^{\circ}C$, the specimen had a uniform microstructure with small grains. However, abnormally grown grains started to appear at $1250^{\circ}C$ and a homogeneous microstructure with large grains was exhibited when the sintering temperature reached $1325^{\circ}C$. When the temperature exceeded $1325^{\circ}C$, the grain growth was inhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that $Na_2Ti_6O_{13}$ is responsible for the grain growth of the $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$) ceramics by forming a liquid phase during the sintering at around $1300^{\circ}C$. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity. All the specimens were observed to have PTCR characteristics except for the sample sintered at $1200^{\circ}C$. The BBNT-NT001 ceramics had significantly decreased $\tilde{n}_{rt}$ and increased resistivity jump with increasing sintering temperature at from $1200^{\circ}C$ to $1325^{\circ}C$. Especially, the BBNT-NT001 ceramics sintered at $1325^{\circ}C$ exhibited superior PTCR characteristics of low resistivity at room temperature ($122\;{\Omega}{\cdot}cm$), high resistivity jump ($1.28{\times}10^4$), high resistivity temperature factor (20.4%/$^{\circ}C$), and a high Tc of $157.9^{\circ}C$.

Electrical Properties of Donor-doped BaTiO3 Ceramics by Attrition Milling and Calcination Temperature (분쇄 방법 및 하소온도에 따른 Doner-doped BaTiO3의 전기적 특성)

  • Lee, Jeong-Cheol;Myong, Seong-Jae;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shin, Dong-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.217-221
    • /
    • 2008
  • In this study, We have been investigated the effect of calcination temperature and high-energy ball-milling of powder influences the $BaTiO_3$-based PTCR(Positive Temperature coefficient Resistance) characteristics and microstructure. The mixed powder was obtained from $BaCO_3$, $TiO_2$, $CeO_2$ ball-milled in attrition mill. The mixed powder was calcine from 1000 $^{\circ}C$ to 1200 $^{\circ}C$ in air and then it was sintered in reduction- re-oxidation atmosphere. As a result, The room-temperature electrical resistivity decreased and increased with increasing calcination temperature. specially, Attrition milled powder could have low room-temperature resistivity and high PTC jump order at 1100 $^{\circ}C$. attrition milling had lower room-temperature resistivity than ball milling. Particle size decreased by Attrition milling of powder influences in calcination temperature and room-temperature resistivity.

A diagram of the new TRAO observation system

  • Kang, Hyunwoo;Lee, Changhoon;Jung, Jae Hoon;Kim, Young Sik;Jeong, Il-Gyo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.55.1-55.1
    • /
    • 2015
  • Taeduk Radio Astronomy Observatory (TRAO) is about to jump with new system - 16 beams array receiver with low noise temperature, new observation system on VxWorks OS, and FX spectrometer for 32 input signals. We serve a quite obvious diagram to understand new TRAO observation system. This diagram will be quick guide for manager and observer.

  • PDF