• Title/Summary/Keyword: Temperature Difference Ratio

Search Result 790, Processing Time 0.026 seconds

The effects of LED light quality on ecophysiological and growth responses of Epilobium hirsutum L., a Korean endangered plant, in a smart farm facility

  • Park, Jae-Hoon;Lee, Jung-Min;Kim, Eui-Joo;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.161-171
    • /
    • 2022
  • Background: Epilobium hirsutum L. is designated as an endangered plant in South Korea located in Asia, due to the destruction of its habitats through the development of wetlands. Therefore, in this study, in order to find a light condition suitable for the growth and ecophysiological responses of Epilobium hirsutum L., those of this plant under treatment with various light qualities in a smart farm were measured. Results: In order to examine the changes in the physiological and growth responses of Epilobium hirsutum L. according to the light qualities, the treatment with light qualities of the smart farm was carried out using the red light: blue light irradiation time ratios of 1:1, 1:1/2, and 1:1/5 and a red light: blue light: white light irradiation time ratio of 1:1:1. As a result, the ecophysiological responses (difference between leaf temperature and atmospheric temperature, transpiration rate, net photosynthetic rate, intercellular CO2 partial pressure, photosynthetic quantum efficiency) to light qualities appeared differently according to the treatments with light qualities. The increase in the blue light ratio increased the difference between the leaf temperature and the atmospheric temperature and the photosynthetic quantum efficiency and decreased the transpiration rate and the intercellular CO2 partial pressure. On the other hand, the white light treatment increased the transpiration rate and intercellular CO2 partial pressure and decreased the temperature difference between the leaf temperature and the ambient temperature and photosynthetic quantum efficiency. Conclusions: The light condition suitable for the propagation by the stolons, which are the propagules of Epilobium hirsutum L., in the smart farm, is red, blue and white mixed light with high net photosynthetic rates and low difference between leaf temperature and atmospheric temperature.

Effects of elevated CO2 concentration and increased temperature on leaf quality responses of rare and endangered plants

  • Jeong, Heon-Mo;Kim, Hae-Ran;Hong, Seungbum;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Background: In the study, the effects of elevated $CO_2$ and temperature on the nitrogen content, carbon content, and C:N ratio of seven rare and endangered species (Quercus gilva, Hibiscus hambo, Paliurus ramosissimus, Cicuta virosa, Bupleurum latissimum, Viola raddeana, and Iris dichotoma) were examined under control (ambient $CO_2$ + ambient temperature) and treatment (elevated $CO_2$ + elevated temperature) for 3 years (May 2008 and June 2011). Results: Elevated $CO_2$ concentration and temperature result in a decline in leaf nitrogen content for three woody species in May 2009 and June 2011, while four herb species showed different responses to each other. The nitrogen content of B. latissimum and I. dichotoma decreased under treatment in either 2009 and 2011. The leaf nitrogen content of C. virosa and V. raddeana was not significantly affected by elevated $CO_2$ and temperature in 2009, but that of C. virosa increased and that V. raddeana decreased under the treatment in 2011. In 2009, it was found that there was no difference in carbon content in the leaves of the six species except for that of P. ramosissimus. On the other hand, while there was no difference in carbon content in the leaves of Q. gilva in the control and treatment in 2011, carbon content in the leaves of the remaining six species increased due to the rise of $CO_2$ concentration and temperature. The C:N ratio in the leaf of C. virosa grown in the treatment was lower in both 2009 and 2011 than that in the control. The C:N ratio in the leaf of V. raddeana decreased by 16.4% from the previous year, but increased by 28.9% in 2011. For the other five species, C:N ratios increased both in 2009 and 2011. In 2009 and 2011, chlorophyll contents in the leaves of Q. gilva and H. hamabo were higher in the treatment than those in the control. In the case of P. ramosissimus, the ratio was higher in the treatment than that in the control in 2009, but in 2011, the result was the opposite. Among four herb species, the chlorophyll contents in the leaves of C. virosa, V. raddeana, and I. dichotoma did not show any difference between gradients in 2009, but decreased due to the rise of $CO_2$ concentration and temperature in 2011. Leaf nitrogen and carbon contents, C:N ratio, and chlorophyll contents in the leaves of seven rare and endangered species of plant were found to be influenced by the rise and duration of $CO_2$ concentration and temperature, species, and interaction among those factors. Conclusions: The findings above seem to show that long-term rise of $CO_2$ concentration, and temperature causes changes in physiological responses of rare and endangered species of plant and the responses may be species-specific. In particular, woody species seem to be more sensitive to the rise of $CO_2$ concentration and temperature than herb species.

The Neural-Fuzzy Control of a Transformer Cooling System

  • Lee, Jong-Yong;Lee, Chul
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2016
  • In transformer cooling systems, oil temperature is controlled through the use of a blower and oil pump. For this paper, set-point algorithms, a reset algorithm and control algorithms of the cooling system were developed by neural networks and fuzzy logics. The oil inlet temperature was set by a $2{\times}2{\times}1$ neural network, and the oil temperature difference was set by a $2{\times}3{\times}1$ neural network. Inputs used for these neural networks were the transformer operating ratio and the air inlet temperature. The inlet set temperature was reset by a fuzzy logic based on the transformer operating ratio and the oil outlet temperature. A blower was used to control the inlet oil temperature while the oil pump was used to control the oil temperature difference by fuzzy logics. In order to analysis the performance of these algorithms, the initial start-up test and the step change test were performed by using the dynamic model of a transformer cooling system. Test results showed that algorithms developed for this study were effective in controlling the oil temperature of a transformer cooling system.

Observational Study of Thermal Characteristics by Distribution Ratio of Green Area at Urban in Summer Season (하절기 관측을 통한 도시의 지역별 공간녹지분포율에 따른 열환경 특성 연구)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.8-16
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of thermal environment in the summer season by conducting the field observation of temperature, relative humidity, and globe temperature in some parts of the city. Observation point was divided to a densely populated area, a residential area, a green area, a waterfront green area and a suburban district by the distribution ratio of green area. In this study, the correlation between maximum temperature and globe temperature, study on index for intensity of the tropical night and the temperature distribution characteristic of measurement points by the distribution ratio of green area were analyzed. The results of this study are as follows. (1) The difference between temperature and globe temperature by the distribution ratio of green area is confirmed. The difference of nighttime is more clearly that of daytime. (2) The average temperature and globe temperature of the densely populated area($29.2^{\circ}C$, $33.7^{\circ}C$) are higher than that of the waterfront green area($27.9^{\circ}C$, $32.0^{\circ}C$) by $1.3^{\circ}C$ and $1.7^{\circ}C$, respectively. (3) The number of tropical nights has different days of tropical nights by the distribution ratio of green area of 17days for the Daegu weather station, 14days for adensely populated area, 14days for a residential area, 6days for a green area, 2days for a waterfront green area, and 2days for a suburban district. (4) The results of the slope of trend line for the effects of the temperature on globe temperature change and the intercept for the size of the impact of radiant energy gained around by the analysis of the correlation between the maximum temperature and globe temperature can be utilized objective evaluation index of the each point's artificial effects.

The Condensation Risk Assessment of Vacuum Multi-Layer Glass and Triple Glass using the Temperature Difference Ratio (진공복층 유리와 3중 유리의 결로 위험성 평가)

  • Won, Jong-Seo;Nam, Jung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.573-577
    • /
    • 2013
  • An external window directly affects the energy performance of its building. In modern well-insulated buildings, U-values for walls of 0.36 $W/m^2K$ or even lower can be realized. In such buildings, glazing with typical U-value of 2.1 $W/m^2K$ or higher creates thermal weak spots on the facade. The performance of the existing triple glass window has been limited to energy savings and condensation prevention. In this study, the performance of condensation prevention of a vacuum multi-layer glass was analyzed. The final conclusion through mock-up experiments is as follows. The surface temperature of the vacuum multi-layer glass was $2^{\circ}C$ higher, and the temperature difference ratio (TDR) was 0.07 lower, than the corresponding values of the triple glass.

Heat and mass transfer characteristics of generator combined rectification system of the GAX ammonia absorption heat pump (GAX 암모니아 흡수식 열폄프의 발생기 일체형 정류기의 열 및 물질전달 해석)

  • 윤상국
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.431-439
    • /
    • 1999
  • A generator-GAX combined rectification system of an ammonia absorption heat pump was investigated to get the optimum design values. The mass and heat transfer phenomena of the rectification system were analysed. The number of column plates, equilibrium temperature of solution on each plate and flow rates of solution and vapor generated were predicted. The characteristics of mass and heat transfer of the generator-GAX combined rectification system, i.e. concentration difference of leaving solution and vapor on each column plate, were found to be mainly governed by the pressure of generator, reflex ratio and temperature difference of analyser coolant. The number of rectification column plates for each different pressure in generator was obtained. The optimum locations for installing the feeder from solution-cooled absorber and GAX desorber in generator were predicted. The improvement of COP was followed by the increase of the rectifier efficiency and the number of column plate, and the decrease of reflex ratio.

  • PDF

Analysis of Cutting Properties with Reference to Amount of Coolant used in an Environment-Conscious Turning Process

  • Yang, Seung-Han;Lee, Young-Moon;Kim, Young-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2182-2189
    • /
    • 2004
  • In the recent years, environmentally conscious design and manufacturing technologies have attracted considerable attention. The coolants, lubricants, solvents, metallic chips and discarded tools from manufacturing operations will harm our environment and the earth's ecosystem. In the present work, the Tukey method of multiple comparisons is used to select the minimum level of coolant required in a turning process. The amount of coolant is varied in 270 designed experiments and the parameters cutting temperature, surface roughness, and specific cutting energy are carefully evaluated. The effects of coolant mix ratio as well as the amount of coolant on the turning process are studied in the present work. The cutting temperature and surface roughness for different quantity of coolant are investigated by analysis of variance (ANOVA) - test and a multiple comparison method. ANOVA-test results signify that the average tool temperature and surface roughness depend on the amount of coolant. Based on Tukey's Honestly Significant Difference (HSD) method, one of the multiple comparison methods, the minimum level of coolant is 1.0 L/min with 2% mix ratio in the aspect of controlling tool temperature. F-test concludes that the amount of coolant used does not have any significant effect on specific cutting energy. Finally, Tukey method ascertains that 0.5 L/min with 6% mix ratio is the minimum level of coolant required in turning process without any serious degradation of the surface finish. Considering all aspects of cutting, the minimum coolant required is 1.0 L/min with 6% mix ratio. It is merely half the coolant currently used i.e. 2.0 L/min with 10% mix ratio. Minimal use of coolant not only economically desirable for reducing manufacturing cost but also it imparts fewer hazards to human health. Also, sparing use of coolant will eventually transform the turning process into a more environment-conscious manufacturing process.

Effects of Stabilizing Thermal Gradients on the Natural Convection in Rectangular Enclosures due to Lateral Temperature Difference (양단온도차에 의한 직각용기내 자연대류에 미치는 안정온도구배의 영향)

  • Kim, Moo Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.365-375
    • /
    • 1991
  • Confined natural convection due to lateral temperature difference in rectangular enclosures was studied numerically and experimentally for the insulated and the constant temperature enclosures. In the case of insulated enclosure, the flow pattern and heat transfer modes are rather simple depending mainly upon Rayleigh number. In the case of isothermal enclosure, however, the phenomena of flow and heat transfer are somewhat complex and interesting due to the stable thermal gradients and various circumstances resulted from four wall temperature conditions. As a dimensionless variable, to describe properly the flow and heat transfer phenomena in the isothermal enclosure, temperature difference ratio ${\Delta}T_v/{\Delta}T_H$ is newly introduced and this parameter seems to be appropriate in the analysis of results on the effect of stabilizing thermal gradient.

  • PDF

Simulation of the Particle Deposition on a Circular Cylinder in High-Temperature Particle-Laden Flow (원형 실린더 주위의 고온 유동에서 입자의 부착 해석)

  • Jeong, Seok-min;Kim, Dongjoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2019
  • Numerical simulations are performed for the thermal fluid flow around a circular cylinder, and the particle trajectories are calculated to investigate the particle motions and deposition characteristics. We aim to understand the effects of three important parameters (particle Stokes number, temperature difference in the flow and on the cylinder surface, and thermal conductivity ratio between the fluid and the particles) on the deposition efficiency. The results show that the thermophorectic effect is insignificant for particles with large Stokes numbers, but it affects particles with small Stokes numbers. The deposition efficiency increases with the increase in temperature difference between the flow and the cylinder or the decrease in ratio of thermal conductivity of the particles to the fluid. When thermophoresis becomes significant, the particles are deposited even on the back side of the cylinder.

Effect of High Temperature on Leaf Physiological Changes as Chlorophyll composition and Photosynthesis Rate of Rice (벼 등숙기 고온이 잎의 엽록소구성과 광합성 및 생리적 변화에 미치는 영향)

  • Shon, Jiyoung;Kim, Junhwan;Lee, Chung-Kuen;Yang, Woonho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.266-272
    • /
    • 2015
  • High temperature impairs rice grain yield and quality. To understand the effect of high temperature on leaf physiological activity and grain filling, two cultivars of rice that Dongan and Ilpum were exposed to high temperature during ripening stage. Grain filling rate, perfect grain ratio and grain weight of high temperature ($27^{\circ}C{\pm}4^{\circ}C$) treated both rice cultivars were decreased than those of control temperature ($22^{\circ}C{\pm}4^{\circ}C$) treated. The reduction rates of grain filling ratio, perfect grain ratio and grain weight of high temperature treated to control treated rice were higher in Ilpum than Dongan. Chlorophyll contents of rice leaves under high temperature at early ripening stage were higher than those of control temperature, but those were slowly decreased with no difference between temperature treatment since at mid ripening stage. Although chlorophyll a/b ratio under high temperature was decreased from heading to 15 days after heading, that was gradually increased since 15 days after heading. Protein concentrations of rice leaves for ripening stage was a similar pattern with chlorophyll changes. The rate of photosynthesis at 14 days after heading under high temperature was higher than those of control temperature, but there was no difference at those of 7 and 34 days after heading between two temperature treatment. Free sugars under high temperature treated leaves were lower than control temperature. Consequently, these results exhibit that high temperature accelerate leaf physiological activity as chlorophyll synthesis and photosynthesis rate unlike the deterioration of grain filling.