• Title/Summary/Keyword: Temperature Difference Energy

Search Result 1,108, Processing Time 0.024 seconds

Study on Surface Temperature Change of PV Module Installed on Green Roof System and Non-green Roof System (옥상녹화와 비 옥상녹화 평지붕에 설치 된 PV모듈의 표면온도 변화 고찰)

  • Yoo, Dong-Chul;Lee, Eung-Jik;Lee, Doo-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.214-219
    • /
    • 2011
  • Today, various activities to save energy are being conducted around the world. Even in our country, carbon reduction policy is being conducted for low carbon green growth and with this movement, effort to replace energy sources by recognizing the problems on environment pollution and resource exhaustion due to the indiscrete usage of fossil fuel is being made. Therefore, active study on renewable energy is in progress as part of effort to replace the energy supply through fossil fuel and solar ray industry has rapidly developed receiving big strength of renewable energy policies. The conclusion of this study measuring the surface temperature change of single crystal and polycrystalline PV module in green roof system and non-green roof system aspect are as follows. There was approximately $4^{\circ}C$ difference in PV module temperature in green roof system and non-green roof system aspect and this has the characteristic to decrease 0.5% when the temperature rises by $1^{\circ}C$ when the front side of the module is $20^{\circ}C$ higher than the surrounding air temperature following the characteristic of solar cells. It can be concluded that PV efficiency will be come better when it is $4^{\circ}C$ lower. Also, in result of temperature measurement of the module back side, there was $5^{\circ}C$ difference of PV module installed on the PV module back side and green roof system side on the 5th, $3^{\circ}C$ on the 4th, $2^{\circ}C$ on the 5th to show decreasing temperature difference as the air temperature dropped, but is judged that there will be higher temperature difference due to the evapotranspiration latent heat effect of green roof system floor side as the temperature rises. Based on this data, it is intended to be used as basic reference to maximize efficiency by applying green roof system and PV system when building non-green roof system flat roof.

  • PDF

Numerical Study on using Immersion Cooling for Thermal Management of ESS (Energy Storage System) (ESS(Energy Storage System) 열관리를 위한 액침 냉각 활용에 대한 수치해석 연구)

  • Jeonggyun Ham;Nayoung You;Myeongjae Shin;Honghyun Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • The introduction of the sector coupling concept has expanded the scope of ESS utilization, resulting in the importance of thermal management of ESS. To ensure the safe use of the lithium-ion batteries that are used in ESS, it is important to use the batteries at the optimal temperature. To examine the utilization of liquid cooling in ESS, numerical study was conducted on the thermal characteristics of 21700 battery modules (16S2P array) during liquid cooling using Novec-649 as insulating fluid. The NTGK model, an MSMD model in ANSYS fluent, was used to investigate thermal characteristics on the battery modules with liquid immersion cooling. The results show that the final temperature of the battery module discharged at 5 C-rate is 68.9℃ using natural convection and 48.3℃ using liquid cooling. However, the temperature difference among cells in the battery module was up to 0.5℃ when using natural convection cooling and 5.8℃ when using liquid cooling, respectively, indicating that the temperature difference among cells was significantly increased when liquid cooling was used. As the mass flow rate increased from 0.01 kg/s to 0.05 kg/s, the average temperature of the battery module decreased from 48.3℃ to 38.4℃, confirming that increasing the mass flow rate of the insulating fluid improves the performance of liquid immersion cooling. Although partial liquid immersion cooling has a high cooling performance compared to natural convection cooling, the temperature difference between modules was up to 8.9℃, indicating that the thermal stress of the battery cells increased.

Analysis of PCM Wallboards Design Parameters using Dynamic Energy Simulation (동적 에너지 시뮬레이션을 이용한 PCM보드의 설계변수 분석에 관한 연구)

  • Lee, Jin-Uk;An, Sang-Min;Kim, Taeyeon;Lee, Seung-Bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.97-104
    • /
    • 2012
  • A phase-change material is a substance with a high heat of fusion which, melting and freezing at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid. Therefore, PCMs are classified as latent heat storage (LHS) units. The purpose of this study is to analyze PCM wallboard design parameters using dynamic energy simulation. Among the factors of PCM, melting temperature, latent heat, phase change range, thermal conductivity are very important element to maximize thermal energy storage. In order to analyze these factors, EnergyPlus which is building energy simulation provided by department of energy from the U.S is used. heat balance algorithm of energy simulation is conduction finite difference and enthalpy-temperature function is used for analyzing latent heat of PCM. The results show that in the case of melting temperature, the thermal energy storage could be improved when the melting temperature is equal to indoor surface temperature. It seems that when the phase change range is wide, PCM can store heat at a wide temperature, but the performance of heat storage is languished.

Heat transfer of green timber wall panels (그린팀버월 패널의 열전달 특성)

  • Kim, Yun-Hui;Jang, Sang-Sik;Shin, Il-Joong
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • 20% of total energy use to sustain temperature of building inside. In this reasons, researchers effort to improve the thermal insulation capacity with new wall system. Using appropriate materials and consisting new wall system should considered in energy saving design. OSB(Oriented strand board), Larch lining board used to consist wall system. $2{\sim}6$ Larch lining board has tongue & groove shape for preventing moisture. Comparing with gypsum board and green timber lining board as interior sheathing material, temperature difference of Green timber wall system was bigger than temperature difference of gypsum board wall system. This aspects indicate that Green timber wall system was revealed higher thermal insulation property than gypsum board wall system. Gypsum board portion transfer heat easily because temperature difference gradient of gypsum board wall system was smaller than OSB wall system. Total temperature variation shape of G-4-S and G-6-S show similar model but, temperature variation shape in green timber wall portion assume a new aspect. The purpose of this study was that possibility of thermal insulation variation and new composition of wall system identify to improve thermal insulation performance. In the temperature case, this study shows possibility of improving thermal insulation performance. Humidity, sunshine and wind etc. should considered to determine building adiabatic properties.

The Annual Averaged Atmospheric Dispersion Factor and Deposition Factor According to Methods of Atmospheric Stability Classification

  • Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Background: This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Materials and Methods: Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. Results and Discussion: All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. Conclusion: These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

A Study on the Performance of 100 W Thermoelectric Power Generation Module for Solar Hot Water System (태양열 온수 시스템에 적용 가능한 100 W급 열전발전 모듈 성능에 관한 연구)

  • Seo, Ho-Young;Lee, Kyung-Won;Yoon, Jeong-Hun;Lee, Soon-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.21-32
    • /
    • 2019
  • Solar hot water system produces hot water using solar energy. If it is not used effectively, overheating occurs during the summer. Therefore, a lot of research is being done to solve this. This study develops thermoelectric power module applicable to solar hot water system. A thermoelectric material can directly convert thermal energy into electrical energy without additional power generation devices. If there is a temperature difference between high and low temperature, it generate power by Seebeck effect. The thermoelectric module generates electricity using temperature differences through the heat exchange of hot and cold water. The water used for cooling is heated and stored as hot water as it passes through the module. It can prevent overheating of Solar hot water system while producing power. The thermoelectric module consists of one absorption and two radiation part. There path is designed in the form of a water jacket. As a result, a temperature of the absorption part was $134.2^{\circ}C$ and the radiation part was $48.6^{\circ}C$. The temperature difference between the absorption and radiation was $85.6^{\circ}C$. Also, The Thermoelectric module produced about 122 W of irradiation at $708W/m^2$. At this time, power generation efficiency was 2.62% and hot water conversion efficiency was 62.46%.

Greenhouse Heating Characteristics of Heat Pump-Latent Heat Storage System (열펌프-잠열축열 시스템의 온실 난방 특성 연구)

  • 강연구;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.379-384
    • /
    • 2000
  • In order to use the natural thermal energy as much as possible for greenhouse heating, the air-air heat pump system involved PCM(phase change material) latent heat storage system was composed, and three types of greenhouse heating system(greenhouse system, greenhouse-PCM latent heat storage system, greenhouse-PCM latent heat storage-heat pump system) were recomposed from the greenhouse heating units to analyze the heating characteristics. The results could be concluded as follows; 1) In the greenhouse heated by the heat pump under the solar radiation of 406.39W/$m^2$, the maximum PCM temperature in the latent heat storage system was 24$^{\circ}C$ and the accumulated thermal energy stored in PCM mass of 816kg during the daytime was 100,320kJ. In the greenhouse without heat pump under the maximum solar radiation of 452.83W/$m^2$, the maximum PCM temperature in the latent heat storage system was 22$^{\circ}C$ and the accumulated thermal energy stored during the daytime was 52.250kJ. 2) In the greenhouse-PCM system without heat pump the heat stored in soil layers from the surface to 30cm of the soil depth was 450㎉/$m^2$. 3) In all of the greenhouse heating systems, the difference between the air temperature in greenhouse and the ambient temperature was about 20~23$^{\circ}C$ in the daytime. In the greenhouse without heat pump and PCM latent heat storage system the difference between the ambient temperature and the air temperature in the greenhouse was about 6~7$^{\circ}C$ in the nighttime, in the greenhouse with only PCM latent heat storage system the temperature difference about 7~13$^{\circ}C$ in the nighttime and in the greenhouse with the heat pump and PCM latent heat storage system about 9~14$^{\circ}C$ in the nighttime.

  • PDF

Thermal Stratification Effects Near an Interface by Horizontal Inflow of Cold Water in Thermal Storage Tank (냉수가 수평유입되는 열저장탱크의 중간 경계면 부근에서의 열성층 효과)

  • Hwang, Sung-Il;Pak, Ee-Tong
    • Solar Energy
    • /
    • v.8 no.2
    • /
    • pp.46-56
    • /
    • 1988
  • This investigation concerns thermal stratification of the water due to the temperature difference (${\Delta}T=T_{\infty}-T_i$) between the mean temperature of the water in the test tank (1m wide, 1m high, 2.1m long) and the temperature of the inflow water into the tank; flow rate of circulating water and height of the sink diffuser in the test tank. The additional objectives was to observe a stratification phenomena near an interface by measuring the velosities and the temperature difference and investigate an availabilities of the better effective hot water through establishing thermocline near an interface around the bottom of the tank. Following results were obtained through the experiments. 1. When the flow rate was constant and the temperature difference (${\Delta}T=T_{\infty}-T_i$) between the mean temperature of the flow in the test tank and the temperature of the inflow water increased by 5.6, 9.5, 13.5($^{\circ}C$), obtained the better effective advantage of hot water and the stress near an interface increased gradually. 2. When the ${\Delta}T=T_{\infty}-T_i$ was constant and flow rate increased by 4.0, 4.8, 6.4, 8.0 (LPM), obtained the better effective advent age of hot water and the mean stress near an interface increased gradually. 3. When the height of the sink diffuser was 25cm from tank bottom in comparison with 50cm, obtained the better effective advantage of hot water and the mean stress near an interface increased.

  • PDF

A Property Analysis on Spatial Distribution of Sea Water Temperature Difference for Site Selection of Ocean Thermal Energy Conversion Plant (해양온도차 발전소의 입지선정을 위한 해수 온도차의 공간적 분포특성 분석)

  • 서영상;장이현;조명희
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.567-575
    • /
    • 1999
  • This study found potential ability to generate electric power using difference in water temperature between sea surface water and deep water in the East Sea which includes the East Sea Proper Water with the temperature less than 1$^{\circ}C$ throughout a year without seasonal variation. To quantify the difference in water temperature between sea surface water and deep water in the East Sea. We computed the annual mean ($^{\circ}C$), the annual amplitude ($^{\circ}C$), the annual phase (degree) and the duration time which showed more than 15$^{\circ}C$ temperature difference from the water temperature data using Harmonic analysis during 1961~1997. The best place for generating electric power in the East Sea seems to be the eastward ocean areas (36$^{\circ}$ 05'N, 129$^{\circ}$ 48'E~36$^{\circ}$ 05'N, 130$^{\circ}$ 00E'E) from Pohang city. The annual mean of the difference in water temperature between sea surface water and 500 m depth was 24$^{\circ}$C at the place to generate electric power in August according to the data of 1961~1997. the maximum duration periods with more than 15$^{\circ}C$ temperature difference were 215 days (5/5-12/10) a year in the place mentioned electricity with a stable plan. In the East Sea coastal areas of the Korean peninsula, the average minimum depth to reach the East Sea Proper Water from surface water is 300 m and fluctuates between 250 m and 350 m throughout a year. Further studies could be needed for the utilization of cold water, such as the East Sea Proper Water for energy conversion.

  • PDF

Utilization of Energy in the Sea Water of the Southeastern Yellow Sea (한국남서해의 열 에너지 이용)

  • 장선덕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.113-116
    • /
    • 1978
  • To ascertain the feasibility of the energy utilization in the sea adjacent to Korea, the distribution of the vertical temperature difference and the seasonal variation in the southeastern Yellow Sea are studied in relation to the sea water circulation. In summer, a region of high vertical temperature difference of approximately 16$^{\circ}C$ was found at a distance of approximately 40 miles from the western coast of Korea. It is located at the west of 125${\circ}$ 30`E and at the north of 34${\circ}$N. The vertical temperature structure is sustained by the inflow of Yellow Sea Warm Current water, the warming of the surface water of the Yellow Sea and the periodical renewal of the Yellow Sea Cold Water. It may be stated that power can be obtained from the sea water by making the use of the temperature difference. The vertical temperature difference was around 14$^{\circ}C$ in the western and southern waters of Jejudo Island. The vertical temperature difference decreases in autumn, and disappears due chiefly to the vigorous convective vertical mixing in winter when the northwest monsoon prevails. The power can be obtained from sea throughout the year, if power generation by the temperature difference is combined with that by wind and wave, and systemized in such a way that the former is employed in the hot season of summer, while the latter in winter and spring.

  • PDF