• Title/Summary/Keyword: Temperature Controlled Packaging

Search Result 48, Processing Time 0.033 seconds

A Study on the Improvement of Maintaining Temperature of Aviation Dangerous Goods (항공 운송 위험물의 정온 유지 개선방안)

  • Se-Cheol Shin;Hyung-Hwan An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1215-1221
    • /
    • 2023
  • According to the study and experiments performed on the Improvement of Maintaining Temperature of Aviation Dangerous Goods, a conclusion was drawn that clear technical guidelines should be established from the design and assembly stage of temperature-controlled packaging, taking into account actual transportation environment. In particular, profiles consisting of only two types of summer and winter are difficult to adjust flexibly in transportation process with severe weather and temperature changes such as spring and fall. To this end, there is a need to establish a compromise profile configuration for summer and winter. It was also found that the condition of the refrigerant, temperature control, and the speed of the packaging operation have a significant impact on maintaining constant temperature. Therefore, all packing operations need to be completed within a short period of time in the environment close to the target temperature. The current packing instructions provided by packaging manufacturers do not provide precise instructions on post-conditioning, but the experiments in this study confirmed that post-conditioning is very important for maintaining the target temperature, so it is necessary to provide precise legal packing technical instructions.

Development of Temperature Controlled Impulse Sealer for Preventing Cumulative Heat and Improving Sealing Quality (누적열 방지 및 비닐 접착품질 향상을 위한 온도 제어형 임펄스 씰러 (Impulse Sealer)의 개발)

  • Kim, Insoo;Kim, Sung Min;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.117-123
    • /
    • 2019
  • The general Impulse Sealer has a problem of sealing quality because continuously sealing process results in an undesirable temperature rise, which may accumulate the heat during the operation. In order to address such a drawback, the controlled sealing temperature method can be effectively utilized compared with the general controlled time method. As such, a temperature sensor with capability of detecting the sealing temperature was installed, and a separate PCB was manufactured to control the sealing temperature by measuring and calculating the detected temperature. The temperature changes during the temperature rise and maximum temperature after continuously operation were investigated using an Impulse Sealer system. Next, the results obtained from experiment were compared with each other. As such, the maximum temperature was 70.3℃, whereas 8.9℃ was recorded as control temperature. It implies that this controlled temperature system prevented the undesirable temperature rise, thereby causing a consistent sealing quality.

Development of Long-Term Storage Technology for Chinese Cabbage - Physiological Characteristics of Postharvest Freshness in a Cooler with a Monitoring and Control Interface

  • Lim, Ki Taek;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.194-204
    • /
    • 2014
  • Purpose: The aim of this study was to develop long-term storage technology for Chinese cabbage in order to extend the period of availability of freshly harvested products. The scope of the paper deals with the use of a cooler with a remote monitoring and control interface in conjunction with use of packaging film. Methods: A cooler with a real time monitoring system was designed as a low-temperature storage facility to control temperature and relative humidity (RH). The effects of storage in high-density polyethylene (HDPE) plastic boxes, 3% chitosan dipping solution, polypropylene film (PEF) with perforations, and mesh packaging bags on physiological responses were investigated. The optimal storage temperature and humidity for 120 days were below $0.5^{\circ}C$ and 90%, respectively. Physiological and biochemical features of cabbage quality were also analyzed: weight loss, texture, and sugar salinity, chlorophyll, reducing sugar, and vitamin C contents. Results: The cooler with a remote monitoring and control interface could be operated by an HMI program. A $0.5^{\circ}C$ temperature and 90% humidity could be remotely controlled within the cooler for 120 days. Postharvest freshness of Chinese cabbages could be maintained up to 120 days depending on the packaging method and operation of the remote monitoring system. In particular, wrapping the cabbages in PEF with perforations resulted in a less than a 5% deterioration in quality. This study provides evidence for efficient performance of plastic films in minimizing post-harvest deterioration and maintaining overall quality of cabbages stored under precise low-temperature conditions with remote monitoring and a control interface. Conclusions: Packaging with a modified plastic film and storage in a precisely controlled cooler with a remote monitoring and control interface could slow down the physiological factors that cause adverse quality changes and thereby increase the shelf life of Chinese cabbage.

Fabrication of NTC thermistor embedded Miniature Thermoelectric Cooling Module for Temperature Control (NTC 써미스터가 내장된 항온 제어용 소형 열전 냉각 모듈 제조)

  • Park J. W.;Choi J. C.;Hwang C. W.;Choi S. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.83-89
    • /
    • 2004
  • NTC thermistor embedded miniature thermoelectric module was fabricated for the precise temperature control of optical communication device such as laser diode (LD). The miniature thermoelectric module ($7.2 mm{\times}9 mm{\times}2.2 mm$) consists of 21 BiTe thermoelectric couples, the operating temperature is precisely controlled by embedded thermistor with quick response. The figure-of-merit (Z), maximum temperature difference (${\Delta}T_{max}$), maximum cooling capacity ($Q_{max}$) of the miniature thermoelectric module were $2.5{\times}10^{-3}$/K, 72 K, 2.2 W respectively and temperature could be controlled in range of ${\pm}0.1^{\circ}C$ accuracy in air. The fabricated miniature thermoelectric module is suitable for applications of the optical communication packaging.

  • PDF

Assessment Methodology of Junction Temperature of Light-Emitting Diodes (LEDs)

  • Chang, Moon-Hwan;Pecht, Michael
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.7-14
    • /
    • 2016
  • High junction temperature directly or indirectly affects the optical performance and reliability of high power LEDs in many ways. This paper is focused on junction temperature characterization of LEDs. High power LEDs (3W) were tested in temperature steps to reach a thermal equilibrium condition between the chamber and the LEDs. The LEDs were generated by pulsed currents with duty ratios (0.091% and 0.061%) in multiple steps from 0mA and 700mA. The diode forward voltages corresponding to the short pulsed currents were monitored to correlate junction temperatures with the forward voltage responses for calibration measurement. In junction temperature measurement, forward voltage responses at different current levels were used to estimate junction temperatures. Finally junction temperatures in multiple steps of currents were estimated in effectively controlled conditions for designing the reliability of LEDs.

Quality Characteristics of Pork Belly Meat Stored in a Container Automatically Controlled under High CO2 Atmosphere (고 CO2농도 기체조성으로 자동제어된 용기에 저장된 삼겹살의 품질특성)

  • Soo Yeon, Jung;Dong Sun, Lee;Duck Soon, An
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.217-221
    • /
    • 2022
  • Container system automatically controlled in its atmosphere of high CO2/low O2 was devised to contain and store pork belly meat at chilled temperature. The meat in the container system was compared in the quality preservation at 0℃ for 21 days to that in air-filled container and vacuum package. The container atmosphere could be controlled to be of 47~60% CO2 and 7~10% O2 through time-controlled intermittent CO2 injection. The controlled atmosphere in the developed system was effective in suppressing pH change and aerobic bacterial growth contributing to sensory quality preservation. Compared to control of air-filled container, vacuum packaging showed lower microbial growth and slower pH change on the meat but with high drip loss. The devised container system to keep high CO2 and mildly low O2 concentrations is effective in the meat quality preservation on overall, and may be extended to a variety of meat products with possible modification tuned for product requirements.

Curing Kinetics of the No-Flow Underfill Encapsulant

  • Jung, Hye-Wook;Han, Sang-Gyun;Kim, Min-Young;Kim, Won-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.134-137
    • /
    • 2001
  • The cure kinetics of a cycloalipatic epoxy / anhydride / Co(II) system for a no-flow underfill encapsulant, has been studied by using a differential scanning calorimetry(DSC) under isothermal and dynamic conditions over the temperature range of $160^{\circ}C ~220^{\circ}C$. The kinetic analysis was carried out by fitting dynamic/isothermal heating experimental data to the kinetic expressions to determine the reaction parameters, such as order of reaction and reaction constants. Diffusion-controlled reaction has been observed as the cure conversion increases and successfully analyzed by incorporating the diffusion control term into the rate equation. The prediction of reaction rates by the model equation corresponded well to experimental data at all temperature.

  • PDF

Diode Temperature Sensor Array for Measuring and Controlling Micro Scale Surface Temperature (미소구조물의 표면온도 측정 및 제어를 위한 다이오드 온도 센서 어레이 설계)

  • Han, Il-Young;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1231-1235
    • /
    • 2004
  • The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, Thermal finger print, Micro PCR(polymer chain reaction), ${\mu}TAS$ and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 ${\times}$ 32 array of diodes (1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm ${\times}$ 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters ($1K{\Omega}$) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  • PDF

Processing and Packaging of Anchovy Sauce (멸치액젓의 가공공정 및 포장에 대한 검토)

  • 이동선;서은수;이광호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.6
    • /
    • pp.1087-1093
    • /
    • 1996
  • Current processing and packaging of anchovy sauce was reviewed and a new method of anchovy sauce processing was proposed for standardized production and quality management. The proposed procedure for liquid type anchovy sauce involves mixing of anchovy fishes and salt(20%), stored aging and fermentation under controlled temperature condition, filtration/centrifuge, secondary fermentation and filtration of residue added with brine solution, combining of first and second filtrates, packaging into container, and pasteurization. Treatment of residue waste was also considered.

  • PDF

A Study on a In-mold Packaging Process using Injection Molding (사출성형을 이용한 마이크로 채널의 패키징 공정에 관한 연구)

  • Lee, Kwan-Hee;Park, Duck-Soo;Yoon, Jae-Sung;Yoo, Yeong-Eun;Choi, Doo-Sun;Kim, Sun-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1821-1824
    • /
    • 2008
  • A novel in-mold packaging process has been developed to manufacture devices with closed channels. In this unified process, fabrication of open channels and forming the rigid cover on top of them are sequentially integrated in the same mold. The entire process is comprised of two phases. In the first phase, the open channels are fabricated under an exquisitely controlled temperature and pressure using the conventional micro injection molding technology. In the second phase, the closed channels are fabricated by conducting the injection molding process using the molded structure with the open channels as a mold insert. As a result, the in-mold technology can eliminate the bonding processes such as heating, ultrasonic or chemical processes for cohesion between the channel and the cover, which have been required in conventional methods.

  • PDF