• 제목/요약/키워드: Temperature Conditioning

검색결과 2,225건 처리시간 0.033초

탄소 나노튜브 나노유체의 열전도도에 대한 연구 (Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids)

  • 김봉훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.168-175
    • /
    • 2006
  • An experimental study was conducted to investigate the effect of the morphology of CNT on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using asteady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature, Although functionalized SWNT produiced a more stable and homogeneous suspension, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0 percent by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT, the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

  • PDF

고속도로 톨게이트 요금수납원의 작업환경 유해인자 노출평가 (Exposure Assessment of Cashiers at Expressway Tollbooths)

  • 박해동;강준혁;김준범
    • 한국산업보건학회지
    • /
    • 제31권1호
    • /
    • pp.13-21
    • /
    • 2021
  • Objectives: The purpose of this study was to evaluate the exposures of cashiers who work at expressway tollbooths. Methods: We measured temperature(temp.), relative humidity(RH), and contaminants with direct reading instruments at ten expressway toll gate in September 2015. Elemental carbon was collected on the quartz filters and analyzed with an OCEC analyzer. Results: The average levels for temp., RH, carbon monoxide, carbon dioxide, dust(PM10), and black carbon were respectively 24.6~27.8℃, 32.3~65.3%, 0.5~1.2 ppm, 456~559 ppm, 12~111 ㎍/㎥, and 3.1~10.1 ㎍/㎥ at each tollbooth. The concentrations of elemental carbon within the tollbooth(1.8~7.2 ㎍/㎥) were lower than outdoors(2.5~10.0 ㎍/㎥), but exhibited a high correlation(r2=0.855). The exposure levels for carbon monoxide, black carbon, and elemental carbon in the tollbooths were significantly higher than the offices. The concentrations of black carbon and elemental carbon showed a high correlation(r2=0.756). Conclusions: The levels of contaminants were below the occupational exposure limits in the expressway tollbooth. There were ventilation and air conditioning systems in the booths, but it is necessary to maintain and use the systems properly.

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • 제15권1호
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

국내 지열원 히트펌프 유닛의 인증제도 분석을 통한 신뢰성 향상 방안 연구 (A Study on Reliability Improvement of Domestic Ground Source Heat Pump Units by Analyzing the Certification System)

  • 양찬우;강희정;오세왕;도우빈;이광호;최종웅;조용;최종민
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.72-83
    • /
    • 2023
  • Only ground source heat pump units certified according to the regulations in Korea can be adopted in ground source heat pump systems. In this study, domestic and international standards and regulations for ground source heat pump units were investigated. Unlike ISO 13256-1~2, which is the international standard, KS B 8292~8294 for ground source heat pump unit only included rated test conditions. Therefore, it is necessary to supplement various test conditions to the KS B series, because its performance data, which is required to calculate the system's design capacity, is dependent on the change in entering water temperature. The difference between the coefficient of performance of the certified ground source heat pump units and the certified criteria changed significantly according to the operating mode, heat source, and load type, because the criteria increased by about 5% for all. Thus, it is highly suggested that the certification standards be revised while considering the product performance level and various conditions.

300A급 일반 산업용 전류센서의 설계 및 제작 (Design and fabrication of a 300A class general-purpose current sensor)

  • 박주경;차귀수;구명환
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.1-8
    • /
    • 2016
  • 오늘날 전류센서는 전류량 제어, 감시, 계측 등 매우 다양한 분야에서 사용되고 있다. 또한 전력망의 스마트 그리드사업, 신재생에너지 발전, 전기자동차와 하이브리드 자동차 등의 수요가 커지면서 그 사용영역이 점차 확대되고 있는 추세이다. 여러 종류의 전류센서 중에서 홀 소자를 사용하는 개방형 전류센서는 다른 형식의 전류센서에 비해 가격이 싸고, 크기와 무게가 작은 장점이 있지만 정밀도가 낮고 주위의 온도 변화에 따라 특성이 변하는 것이 단점이다. 이러한 단점을 보완하기 위하여 본 연구에서는 정밀도와 온도성능이 뛰어난 300A급 개방형 전류센서를 설계 및 제작하였다. 300A급 개방형 전류센서를 제작하기 위해서 수치해석을 통해 철심을 설계하고 회로해석 프로그램을 이용하여 신호처리에 필요한 회로들을 설계하였다. 이러한 과정을 통해서 SMD(Surface Mount Device) 형태로 제작된 300A급 개방형 전류센서는 30 ~ 300A의 직류 및 교류전류를 통전한 실험에서 정밀도 오차가 0.75% 이내, 선형도 오차가 0.19% 이내였다. 또한 온도보상회로를 포함한 전류센서를 $-25{\sim}85^{\circ}C$의 온도범위에서 동작시켰을 때 온도계수는 $0.012%/^{\circ}C$ 이내였다.

냉난방 시간을 예측하는 인공신경망의 구축 및 IoT 시스템에서의 활용 (Air-conditioning and Heating Time Prediction Based on Artificial Neural Network and Its Application in IoT System)

  • 김준수;이주익;김동호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.347-350
    • /
    • 2018
  • 사용자가 집에 도착하기 전에 IoT 시스템이 집안 온도를 자동으로 쾌적하게 하기 위해서는 사용자의 도착 예정 시간에 맞게 설정한 온도에 도달할 수 있는 최적의 에어컨 및 난방의 가동 시작 시간을 예측해야 한다. 가동 시간을 정확하게 예측한다면 불필요한 가동시간을 줄일 수 있기 때문에 요금 낭비를 피할 수 있는 효과가 있다. 본 논문은 에어컨과 보일러를 사용하는 집의 냉난방 시간을 예측하는 인공신경망과 이를 활용하는 IoT 시스템을 소개한다. 에어컨과 보일러가 특정 시작 온도에서 특정 목표 온도로 집안을 냉난방 하는데 걸리는 시간에 영향을 주는 변수는 집안의 구조, 집안의 크기, 외부 날씨 환경 등으로 매우 다양하다. 그중에서 측정 가능한 변수인 집안 온도, 집안 습도, 외부 온도, 외부 습도, 풍향, 풍도, 풍속 냉각 효과를 활용하여 학습데이터를 만들고 최적의 인공신경망을 구축하였다. 인공신경망을 구축한 후에는 이를 활용하는 IoT 시스템을 개발하였다. IoT 시스템은 라즈베리파이3 기반의 메인 시스템과 안드로이드 기반의 모바일 애플리케이션으로 구성하였다. 인공신경망을 활용하기 위해 모바일 애플리케이션의 GPS 센서를 활용하여 사용자의 이동 분석하고 귀가 시간을 예측하는 기능을 구현하였다.

  • PDF

Passive Sampler를 이용한 유물 전시관내 폼알데하이드 농도 모니터링 (Monitoring of Formaldehyde Concentration in Exhibition Hall Using Passive Sampler)

  • 이선명;임보아;김서진
    • 보존과학회지
    • /
    • 제33권5호
    • /
    • pp.319-329
    • /
    • 2017
  • 이 연구에서는 Passive sampler를 이용하여 연구대상으로 선정된 2곳의 유물 전시관 내부의 폼알데하이드 농도를 2012년 5월부터 2013년 4월까지 1년간 공간별로 모니터링 하였다. 이 결과, 유물 전시관 내부의 폼알데하이드 농도는 외기에 비해 5배~36배 이상 높은 수치를 나타냈다. 각 전시실과 진열장 내부는 오염원, 공기조화설비, 환경관리에 따라 농도 수준을 달리하였다. 유물 전시관 내 폼알데하이드 농도 수준을 주시험법에 준하여 보정한 결과, 대부분이 환경부의 실내공기질 관리법에서 고시하는 전시실 유지기준($100{\mu}g/m^3$) 뿐만 아니라 일본 국립동경박물관에서 권고하는 문화재 보존환경 기준(약 $50{\mu}g/m^3$)을 모두 초과하였다. 전시실과 진열장 내 폼알데하이드의 농도는 모두 여름>가을>봄>겨울 순으로 높았으며 온 습도가 높은 여름철에 농도 방출량이 증가하였다. 온 습도환경 변화에 따른 폼알데하이드의 농도는 모두 양의 상관관계를 나타냈다. 온도의 경우 $R^2$값이 0.8~0.9의 범위로 폼알데하이드 농도가 습도에 비해 온도에 대한 의존 경향이 큰 것을 알 수 있다. 유물 전시관 내 폼알데하이드 방출 특성 분석은 실내공기질을 개선하는데 기초자료로 활용될 수 있을 것이다.

제주지역 직장어린이집 보육실의 겨울철 실내온열환경 실태 (Winter Indoor Thermal Environment Status of Nursery Rooms in Workplace Daycare Centers in Jeju Island)

  • 김봉애;고연숙
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.81-90
    • /
    • 2017
  • This study was conducted to investigate the thermal environment status of nursery rooms in workplace daycare centers in Jeju and propose measures to improve their indoor physical thermal environment. For this purpose, measurements were performed in the winter indoor physical environment of 51 nursery rooms in 11 workplace daycare centers and a psychological evaluation survey on the thermal environment of nursery rooms was conducted for 70 nursery teachers. The investigation was carried out over 11 days in January 2017. The results are as follow. The average indoor temperature of the nursery rooms was $21.3^{\circ}C$($18.7-23.8^{\circ}C$) and the indoor temperatures of 47 nursery rooms (92.9%) were higher than the environmental hygiene management standard for domestic school facilities ($18-20^{\circ}C$). The average relative humidity was 33.9% (16.4-56.0%), and 37 nursery rooms (86.3%) showed a lower average relative humidity than the standard (40-70%). The average absolute humidity was $9.1g/m^3$ ($4.7-13.6g/m^3$), which was lower than the standard for preventing influenza ($10g/m^3$). When the indoor temperature and humidity of the nursery rooms were compared with international standards, it was found that 85% or more of the 51 nursery rooms maintained appropriate indoor temperatures, but 40-50% of the nursery rooms maintained a low humidity condition. Therefore, they need to pay attention to maintaining the appropriate humidity of the nursery room to keep the children healthy. The average indoor temperature of the nursery rooms showed a weak negative correlation with the average relative humidity. The indoor temperature had a significant effect on the relative humidity: a higher indoor temperature resulted in lower relative humidity. Regarding the fluctuations in the average indoor temperature of the nursery rooms during the day, in daycare centers that used floor heating, the indoor temperature gradually increased form the morning to the afternoon and tended to decrease during lunch time and the morning and afternoon snack times, due to ventilation. The daycare centers that used both floor heating and ceiling-type air conditioners showed a higher indoor temperature and greater fluctuations in temperature compared to the daycare centers that used floor heating only. In the survey results, the average value of the whole body thermal sensation was 3.0 (neutral): 32 respondents (62.7%) answered, "Neutral", Which was the largest number, followed by 21 respondents (30%) who answered, "Slightly hot" and 17 respondents (24.2%) who answered, "Slightly cold." Twenty-nine respondents answered, "Slightly dry," which was the largest number, followed by 28 respondents (54.9%) who answered, "Neutral" and 10 respondents (19.6%) who answered, "Dry." The total number of respondents who answered, "Slightly dry" or "Dry" was large at 39 (56.4%), which suggests the need for indoor environment management to prevent a low-humidity environment. To summarize the above results about the thermal environment of nursery rooms, as the indoor temperature increased, the relative humidity decreased. This suggests the effect of room temperature on the indoor relative humidity; however, frequent ventilations also greatly decrease the relative humidity. Therefore, the ventilation method and the usage of air conditioning systems need to be re-examined.

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • 대한치과보철학회지
    • /
    • 제39권6호
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF

식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석 (Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis)

  • 김태한;최부헌;최나현;장은숙
    • 한국환경농학회지
    • /
    • 제37권4호
    • /
    • pp.268-276
    • /
    • 2018
  • 본 연구는 일반인에게 안전한 실내공기질 개선수단으로 인식되는 공기정화식물의 효율적 적용을 위해 실내공조에 요구되는 총풍량 확보가 가능한 식생기반 바이오필터 시스템을 제안하고자 했다. 시스템의 정량적 성능평가는 강의실형태의 실험실 체적 $332.73m^3$ 내 16명의 재실자 조건에서 목업단위 시스템의 공조 성능, 실내공기질 및 쾌적지표 개선효과에 대한 시계열 분석으로 진행되었다. 우선, 시스템 구동을 통해 총 $1,411.22m^3/h$의 유출 총풍량을 확보하여, 4.24 ACH의 환기율을 제공할 수 있었다. 실내온도는 $1.6^{\circ}C$, 흑구온도는 $1.0^{\circ}C$ 감소가 확인되었으며, 상대습도는 24.4% 상승한 최대 82.0%까지 증가하였다. 상대습도 급증에 따른 쾌적도 감소현상은 송풍기 구동에 따라 발생되는 실내기류로 상쇄되는 것으로 판단된다. 또한, 시스템 가동에 따른 공기질 개선지표 중 $PM_{10}$은 39.5% 감소한 평균 $22.11{\mu}g/m^3$을 기록하였다. 반면, $CO_2$는 최대 1,329 ppm까지 지속적으로 농도가 상승했는데, 이는 광도조건이 광보상점을 만족하지 못해 적용 식물과 재실자에서 방출되는 $CO_2$가 처리되지 못한 것으로 해석된다. 실내쾌적지표의 경우 PMV는 평균 83.6 % 감소된 -0.082, PPD는 평균 47.0% 감소된 5.41%에 수렴하여 식생기반 바이오필터 구동에 의해 높은 쾌적범위의 실내공간조성이 가능한 것으로 판단되었다. 본 연구의 한계는 소수 참여인원과 단기간 실험으로 인하여 시스템의 성능 규명이 제한적인 부분이었으며, 보다 장기간의 실험을 통해 바이오필터에 도입된 식생의 생육상태에 따른 압력손실 변화, 미세먼지 저감에 대한 구체적인 메커니즘 규명 등의 후속연구가 진행되어야 할 것이다.