• Title/Summary/Keyword: Temperature Accuracy

Search Result 1,772, Processing Time 0.033 seconds

Estimation of Frost Occurrence using Multi-Input Deep Learning (다중 입력 딥러닝을 이용한 서리 발생 추정)

  • Yongseok Kim;Jina Hur;Eung-Sup Kim;Kyo-Moon Shim;Sera Jo;Min-Gu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • In this study, we built a model to estimate frost occurrence in South Korea using single-input deep learning and multi-input deep learning. Meteorological factors used as learning data included minimum temperature, wind speed, relative humidity, cloud cover, and precipitation. As a result of statistical analysis for each factor on days when frost occurred and days when frost did not occur, significant differences were found. When evaluating the frost occurrence models based on single-input deep learning and multi-input deep learning model, the model using both GRU and MLP was highest accuracy at 0.8774 on average. As a result, it was found that frost occurrence model adopting multi-input deep learning improved performance more than using MLP, LSTM, GRU respectively.

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts (스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가)

  • Minkyu Kang;Namgyeong Kim;Hyunwoo Nam;Tae Yeob Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

Freezing Time Prediction of Foods by Multiple Regression Analysis (다중회귀분석에 의한 식품의 동결시간 예측)

  • Jeong, Jin-Woong;Kim, Jong-Hoon;Park, Noh-Hyun;Lee, Seung-Hyun;Kim, Young-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.341-347
    • /
    • 1998
  • To develop simple and accurate analytical method for freezing time prediction of beef and tylose under various freezing conditions, freezing time (Y) was regressed against the reciprocal $(X_3)$ of difference of initial freezing point and freezing medium temperature, reciprocal $(X_4)$ of surface heat transfer coefficient, the initial temperature $(X_1)$ and thickness $(X_2)$ of samples which should cover most situations arising in frozen food industry. As results of the multiple regression analysis, equations were obtained as follows. $Y_{tylose}=3.45X_1+7642.84X_2+4642.67X_3+2946.89X_4-431.33\;(R^2=0.9568)$ and $Y_{beef}=0.68X_1+7568.98X_2+2430.78X_3+3293.26X_4-299.00\;(R^2=0.9897)$. These equations offered better results than Plank, Nagaoka and Pham's models, shown in satisfactory agreement with models of Cleland & Earle and Hung & Thompson when were compared to previous models, and the accuracy of its was very high as average absolute difference of about 10% in the difference between the fitted and experimental results. Also, thermal diffusivities of beef and tylose were measured as $4.43{\times}10^{-4}m^2/hr$ and $4.39{\times}10^{-4}m^2/hr$ at $6{\sim}7^{\circ}C$, $2.42{\times}10^{-3}m^2/hr$ and $3.32{\times}10^{-3}m^2/hr$ at $-10{\sim}-12^{\circ}C$. Initial freezing points of beef and tylose were $-1.2^{\circ}C\;and\;-0.6^{\circ}C$, respectively. Surface heat transfer coefficients were estimated $20.57\;W/m^2^{\circ}C$ with no-packing, $16.11\;W/m^2^{\circ}C$ with wrap packing and $13.07\;W/m^2^{\circ}C$ with Al-foil packing, and the cooling rate of immersion freezing method was about 10 times faster than that of air blast freezing method.

  • PDF

A Study on Retrieval of Storage Heat Flux in Urban Area (우리나라 도심지에서의 저장열 산출에 관한 연구)

  • Lee, Darae;Kim, Honghee;Lee, Sang-Hyun;Lee, Doo-Il;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Lee, Kyeong-sang;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.301-306
    • /
    • 2018
  • Urbanization causes urban floods and urban heat island in the summer, so it is necessary to understanding the changes of the thermal environment through urban climate and energy balance. This can be explained by the energy balance, but in urban areas, unlike the typical energy balance, the storage heat flux saved in the building or artificial land cover should be considered. Since the environment of each city is different, there is a difficulty in applying the method of retrieving the storage heat flux of the previous research. Especially, most of the previous studies are focused on the overseas cities, so it is necessary to study the storage heat retrieval suitable for various land cover and building characteristics of the urban areas in Korea. Therefore, the object of this study, it is to derive the regression formula which can quantitatively retrieve the storage heat using the data of the area where various surface types exist. To this end, nonlinear regression analysis was performed using net radiation and surface temperature data as independent variables and flux tower based storage heat estimates as dependent variables. The retrieved regression coefficients were applied to each independent variable to derive the storage heat retrieval regression formula. As a result of time series analysis with flux tower based storage heat estimates, it was well simulated high peak at day time and the value at night. Moreover storage heat retrieved in this study was possible continuous retrieval than flux tower based storage heat estimates. As a result of scatter plot analysis, accuracy of retrieved storage heat was found to be significant at $50.14Wm^{-2}$ and bias $-0.94Wm^{-2}$.

Net Primary Production Changes over Korea and Climate Factors (위성영상으로 분석한 장기간 남한지역 순 일차생산량 변화: 기후인자의 영향)

  • Hong, Ji-Youn;Shim, Chang-Sub;Lee, Moung-Jin;Baek, Gyoung-Hye;Song, Won-Kyong;Jeon, Seong-Woo;Park, Yong-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.467-480
    • /
    • 2011
  • Spatial and temporal variabilities of NPP(Net Primary Production) retrieved from two satellite instruments, AVHRR(Advanced Very High Resolution Radiometer, 1981-2000) and MODIS(MODerate-resolution Imaging Spectroradiometer, 2000-2006), were investigated. The range of mean NPP from A VHRR and MODIS were estimated to be 894-1068 $g{\cdot}C/m^2$/yr and 610-694.90 $g{\cdot}C/m^2$/yr, respectively. The discrepancy of NPP between the two instruments is about 325 $g{\cdot}C/m^2$/yr, and MODIS product is generally closer to the ground measurement than AVHRR despite the limitation in direct comparison such as spatial resolution and vegetation classification. The higher NPP values over South Korea are related to the regions with higher biomass (e.g., mountains) and higher annual temperature. The interannual NPP trends from the two satellite products were computed, and both mean annual trends show continuous NPP increase; 2.14 $g{\cdot}C/m^2$/yr from AVHRR(1981-2000) and 6.08 $g{\cdot}C/m^2$/yr from MODIS (2000-2006) over South Korea. Specifically, the higher increasing trends over the Southwestern region are likely due to the increasing productivity of crop fields from sufficient irrigation and fertilizer use. The retrieved NPP shows a closer relationship between monthly temperature and precipitation, which results in maximum correlation during summer monsoons. The difference in the detection wavelength and model schemes during the retrieval can make a significant difference in the satellite products, and a better accuracy in the meterological and land use data and modeling applications will be necessary to improve the satellite-based NPP data.

The Application of Computer Program for Determination of Fluid Properties and P-T Condition from Microthermometric Data on Fluid Inclusions (유체포유물의 생성시 온도-압력 조건과 유체포유물의 물리화학적 특성연구에 있어서의 컴퓨터 프로그램이용)

  • Oh, Chang-Whan;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 1993
  • Fluid inclusion has been widely used to study the origin and physiochemical conditions of ore deposits. However, it is difficult to get the accurate physiochemical data from fluid inclusion study due to the error of microthermometric data and the complexity of calculation of density and isochore of fluid inclusion. The computer programs HALWAT, $CO_2$, and CHNACL written by Nicholls and Crowford (1985) partly contributed to improve the accuracy of physiochemical data by using complicated equations. These programs are applied to determine the densities and isochores of fluid inclusions for the Cretaceous Keumhak mine using Choi and So's data (1992) and for the Jurassic Samhwanghak mine using Yun's data (1990). The estimated PoT for Keumhak mine from calculated isochores of coexisting fluid inclusions are $230^{\circ}{\sim}290^{\circ}C$ and 500~800 bar which matche well to the poT estimated by Choi and So ($280^{\circ}{\sim}360^{\circ}C$ and 500~800 bar, 1992). However, the poT for Samwhanghak mine estimated in this study by combining the calculated isochores and sulfur isotope geothermometer data by Yun (1990) are about 4~7 kb at $329{\pm}50^{\circ}{\sim}344{\pm}55^{\circ}C$ which are quite different form the P-T estimates by Yun ($255^{\circ}{\sim}294^{\circ}C$ and 1.2~1.9kb, 1990). This discrepancy caused by misinterpretation of homogenization temperature (Th) of fluid inclusion and by application of inappropriate isochores. The application of homogenization temperature and/or inappropriately selected isochore to determine the trapping PoT condition of ore-deposits should be avoided, particularly for ore-deposits formed at pressures higher than 1~2 kb.

  • PDF

Water Quality in a Drainage System Discharging Groundwater from Sangdae-ri Water Curtain Cultivation Area near Musimcheon Stream, Cheongju, Korea (무심천 인근 상대리 수막재배지에서 지하수 사용 후 배출되는 최종 배수로 물의 수질 특성)

  • Moon, Sang-Ho;Kim, Yongcheol;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.409-420
    • /
    • 2015
  • The Sangdae-ri riverside around Musimcheon stream, flowing through Gadeok-myon of Cheongju City, is one of the representative strawberry fields employing water curtain cultivation (WCC) in Korea. In this area, annual groundwater use for WCC has been calculated by a few methods. On the assumption that all the water flowing through the final ditch may be mostly composed of groundwater, the discharge rate in it can be used as a good proxy for assessing the groundwater use. However, in the study area, the final ditch was set up in an unpaved state near and parallel to Musimcheon stream. Under such circumstances, the drainwater is likely to be influenced by infiltration and/or inflow of nearby stream. Hence, we examined whether or not stream water has influenced water flowing out through the final ditch in respect of ion concentrations or field parameters such as T, pH and electrical conductivity (EC) values. The period of measuring field parameters and sample collection was from February 2012 through February 2015. The drainwater in the final ditch did not show the average quality of groundwater, but similar quality of stream water in respect of pH, EC, ion contents and water type. From this, it is suggested that measuring the flow rate of the final ditch should not be directly used for assessing groundwater use in the study area. In addition, because of its sensitivity to ambient temperature, water temperature proved not to be appropriate for estimating the interaction between ditch and stream. For accuracy, additional methods will be needed to calculate mixing ratios between stream and ground water within drainage system.

Prediction of the Italian Ryegrass (Lolium multiflorum Lam.) Yield via Climate Big Data and Geographic Information System in Republic of Korea (기상 빅 데이터와 지리정보시스템을 이용한 이탈리안 라이그라스의 수량예측)

  • Kim, Moonju;Oh, Seung Min;Kim, Ji Yung;Lee, Bae Hun;Peng, Jinglun;Kim, Si Chul;Chemere, Befekadu;Nejad, Jalil Ghassemi;Kim, Kyeong Dae;Jo, Mu Hwan;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.145-153
    • /
    • 2017
  • This study was aimed to find yield prediction model of Italian ryegrass using climate big data and geographic information. After that, mapping the predicted yield results using Geographic Information System (GIS) as follows; First, forage data were collected; second, the climate information, which was matched with forage data according to year and location, was gathered from the Korean Metrology Administration (KMA) as big data; third, the climate layers used for GIS were constructed; fourth, the yield prediction equation was estimated for the climate layers. Finally, the prediction model was evaluated in aspect of fitness and accuracy. As a result, the fitness of the model ($R^2$) was between 27% to 95% in relation to cultivated locations. In Suwon (n=321), the model was; DMY = 158.63AGD -8.82AAT +169.09SGD - 8.03SAT +184.59SRD -13,352.24 (DMY: Dry Matter Yield, AGD: Autumnal Growing Days, SGD: Spring Growing Days, SAT: Spring Accumulated Temperature, SRD: Spring Rainfall Days). Furthermore, DMY was predicted as $9,790{\pm}120$ (kg/ha) for the mean DMY(9,790 kg/ha). During mapping, the yield of inland areas were relatively greater than that of coastal areas except of Jeju Island, furthermore, northeastern areas, which was mountainous, had lain no cultivations due to weak cold tolerance. In this study, even though the yield prediction modeling and mapping were only performed in several particular locations limited to the data situation as a startup research in the Republic of Korea.

Calibration of Hargreaves Equation Coefficient for Estimating Reference Evapotranspiration in Korea (우리나라 기준증발산량 추정을 위한 Hargreaves 공식의 계수 보정)

  • Hwang, Seon-ah;Han, Kyung-hwa;Zhang, Yong-seon;Cho, Hee-rae;Ok, Jung-hun;Kim, Dong-Jin;Kim, Gi-sun;Jung, Kang-ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.238-249
    • /
    • 2019
  • The evapotranspiration is estimated based on weather factors such as temperature, wind speed and humidity, and the Hargreaves equation is a simple equation for calculating evapotranspiration using temperature data. However, the Hargreaves equation tends to be underestimated in areas with wind speeds above 3 m s-1 and overestimated in areas with high relative humidity. The study was conducted to determine Hargreaves equation coefficient in 82 regions in Korea by comparing evapotranspiration determined by modified Hargreaves equation and the Penman-Monteith equation for the time period of 2008~2018. The modified Hargreaves coefficients for 50 inland areas were estimated to be 0.00173~0.00232(average 0.00196), which is similar to or lower than the default value 0.0023. On the other hand, there are 32 coastal areas, and the modified coefficients ranged from 0.00185 to 0.00303(average 0.00234). The east coastal area was estimated to be similar to or higher than the default value, while the west and south coastal areas showed large deviations by area. As results of estimating the evapotranspiration by the modified Hargreaves coefficient, root mean square error(RMSE) is reduced from 0.634~1.394(average 0.857) to 0.466~1.328(average 0.701), and Nash-Sutcliffe Coefficient(NSC) increased from -0.159~0.837(average 0.647) to -0.053~0.910(average 0.755) compared with original Hargreaves equation. Therefore, we confirmed that the Hargreaves equation can be overestimated or underestimated compared to the Penman-Monteith equation, and expected that it will be able to calculate the high accuracy evapotranspiration using the modified Hargreaves equation. This study will contribute to water resources planning, irrigation schedule, and environmental management.

Predicting the Goshawk's habitat area using Species Distribution Modeling: Case Study area Chungcheongbuk-do, South Korea (종분포모형을 이용한 참매의 서식지 예측 -충청북도를 대상으로-)

  • Cho, Hae-Jin;Kim, Dal-Ho;Shin, Man-Seok;Kang, Tehan;Lee, Myungwoo
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.333-343
    • /
    • 2015
  • This research aims at identifying the goshawk's possible and replaceable breeding ground by using the MaxEnt prediction model which has so far been insufficiently used in Korea, and providing evidence to expand possible protection areas for the goshawk's breeding for the future. The field research identified 10 goshawk's nests, and 23 appearance points confirmed during the 3rd round of environmental research were used for analysis. 4 geomorphic, 3 environmental, 7 distance, and 9 weather factors were used as model variables. The final environmental variables were selected through non-parametric verification between appearance and non-appearance coordinates identified by random sampling. The final predictive model (MaxEnt) was structured using 10 factors related to breeding ground and 7 factors related to appearance area selected by statistics verification. According to the results of the study, the factor that affected breeding point structure model the most was temperature seasonality, followed by distance from mixforest, density-class on the forest map and relief energy. The factor that affected appearance point structure model the most was temperature seasonality, followed by distance from rivers and ponds, distance from agricultural land and gradient. The nature of the goshawk's breeding environment and habit to breed inside forests were reflected in this modeling that targets breeding points. The northern central area which is about $189.5 km^2$(2.55 %) is expected to be suitable breeding ground. Large cities such as Cheongju and Chungju are located in the southern part of Chungcheongbuk-do whereas the northern part of Chungcheongbuk-do has evenly distributed forests and farmlands, which helps goshawks have a scope of influence and food source to breed. Appearance point modeling predicted an area of $3,071 km^2$(41.38 %) showing a wider ranging habitat than that of the breeding point modeling due to some limitations such as limited moving observation and non-consideration of seasonal changes. When targeting the breeding points, a specific predictive area can be deduced but it is difficult to check the points of nests and it is impossible to reflect the goshawk's behavioral area. On the other hand, when targeting appearance points, a wider ranging area can be covered but it is less accurate compared to predictive breeding point since simple movements and constant use status are not reflected. However, with these results, the goshawk's habitat can be predicted with reasonable accuracy. In particular, it is necessary to apply precise predictive breeding area data based on habitat modeling results when enforcing an environmental evaluation or establishing a development plan.