• 제목/요약/키워드: Telomere lengthening

검색결과 2건 처리시간 0.019초

Telomere association of Oryza sativa telomere repeat-binding factor like 1 and its roles in telomere maintenance and development in rice, Oryza sativa L.

  • Byun, Mi Young;Cui, Li Hua;Lee, Hyoungseok;Kim, Woo Taek
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.578-583
    • /
    • 2018
  • Telomeres are specialized nucleoprotein complexes that function to protect eukaryotic chromosomes from recombination and erosion. Several telomere binding proteins (TBPs) have been characterized in higher plants, but their detailed in vivo functions at the plant level are largely unknown. In this study, we identified and characterized OsTRFL1 (Oryza sativa Telomere Repeat-binding Factor Like 1) in rice, a monocot model crop. Although OsTRFL1 did not directly bind to telomere repeats $(TTTAGGG){_4}$ in vitro, it was associated with telomeric sequences in planta. OsTRFL1 interacted with rice TBPs, such as OsTRBF1 and RTBP1, in yeast and plant cells as well as in vitro. Thus, it seems likely that the association of OsTRFL1 with other TBPs enables OsTRFL1 to bind to telomeres indirectly. T-DNA inserted OsTRFL1 knock-out mutant rice plants displayed significantly longer telomeres (6-25 kb) than those (5-12 kb) in wild-type plants, indicating that OsTRFL1 is a negative factor for telomere lengthening. The reduced levels of OsTRFL1 caused serious developmental defects in both vegetative and reproductive organs of rice plants. These results suggest that OsTRFL1 is an essential factor for the proper maintenance of telomeres and normal development of rice.

Telomerase: Key to Mortal or Immortal Road

  • Yang, Eun-Young;Sung, Young Hoon;Lee, Han-Woong
    • IMMUNE NETWORK
    • /
    • 제2권4호
    • /
    • pp.183-188
    • /
    • 2002
  • Gradual attrition of telomere to a critical short length elicits successive cellular response of cellular senescence and crisis. Cancer cells evade this process by maintaining functional telomeres via one of two known mechanisms of telomere maintenance. The first and most frequent mechanism involves reactivation of enzyme activity of telomerase, a ribonucleoprotein complex mainly via transcriptional up-regulation of TERT, a catalytic subunit of telomerase complex. The second mechanism utilizes telomerase-independent way termed ALT (for Alternative Lengthening of Telomere), which possibly involves recombination pathways. Thus master key for cellular immortalization is supposed to possess adequate telomere reserves. Indeed, telomerase can alone induce the immortalization under culture on feeder cell layers without generally known inactivation mechanism of tumor suppressor genes. Including this phenomena, this review will focus on telomerase and telomere-associated proteins, thereby implication of these proteins for cellular immortalization processes.