• Title/Summary/Keyword: Telescopium telescopium

Search Result 2, Processing Time 0.014 seconds

Pharmacological and Biochemical studies on Telescopium telescopium - a marine mollusk from the Mangrove regions

  • Samanta, SK;Adhikari, D;Karmakar, S;Dutta, A;Roy, A;Manisenthil, KT;Roy, D;Vedasiromoni, JR;Sen, T
    • Advances in Traditional Medicine
    • /
    • v.8 no.4
    • /
    • pp.386-394
    • /
    • 2008
  • The tissue extract (TTE) of a marine snail Telescopium telescopium, collected from the coastal regions of West Bengal, India, was extensively screened for pharmacological and biochemical properties. Telescopium telescopium (TTE) produced significant lysis of washed rat erythrocytes (both direct and indirect), produced haemorrhagic lesions in the skin and also released haemoglobin (in vitro tissue damage) from different tissue samples. TTE was found to produce pro-inflammatory effects when injected into the rat hind paw and also increased peritoneal vascular permeability. Furthermore, intravenous administration of TTE produced a decrease in blood pressure (hypotensive effect) in anaesthetized rats. The extract produced potent esterase activity, as was evident from the breakdown of FDA with subsequent release of fluorescein (in vitro). TTE also demonstrated prominent cholinesterase, phospholipase, phosphatase and protease activities.

SMBH Mass Estimate Discrepancy and Its Origin of NGC 6861

  • Jang, Minsung;Owers, Matt
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.69.2-69.2
    • /
    • 2012
  • NGC 6861 is the brightest S0 galaxy in the Telescopium group. It has unusually high central stellar velocity dispersion (~400 km/s) and clear rotation (~250 km/s). Considering the well-known M-sigma relation, this large central dispersion implies that the central supermassive black hole (SMBH) has mass comparable to the most massive black holes in the Universe. However, the mass implied by the bulge luminosity-SMBH mass relation is an order of magnitude lower than that predicted by the M-sigma relation. In order to determine the origin of this inconsistency, we obtain integral field spectroscopy using the Wide Field Spectrograph (WiFeS) on the ANU 2.3m telescope. The data are used to map the velocity and velocity dispersion fields which show that our measurements are consistent with those from the other literature. The large field of view the WiFeS observations have allows us to map the kinematics of a much greater portion of NGC 6861 and reveals that the eastern part of the galaxy has higher velocity and dispersion than the rest of halo. We discuss the origin of the unusual fast rotation and the discrepancy of two SMBH mass estimations from three plausible perspectives: 1) the interaction between subgroups of NGC 6861 and its counterpart, NGC 6868; 2) the inhibited growth of the stellar bulge by the AGN activity which leads to an underestimate the SMBH mass when using the bulge luminosity-SMBH mass relation; and 3) gas rich minor mergers that could be crucial for increasing both rotation velocity and velocity dispersion during the evolution of NGC 6861.

  • PDF