• Title/Summary/Keyword: Telescopes

Search Result 345, Processing Time 0.023 seconds

KMTNet Supernova Project : Pipeline and Alerting System Development

  • Lee, Jae-Joon;Moon, Dae-Sik;Kim, Sang Chul;Pak, Mina
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2015
  • The KMTNet Supernovae Project utilizes the large $2^{\circ}{\times}2^{\circ}$ field of view of the three KMTNet telescopes to search and monitor supernovae, especially early ones, and other optical transients. A key component of the project is to build a data pipeline with a descent latency and an early alerting system that can handle the large volume of the data in an efficient and a prompt way, while minimizing false alarms, which casts a significant challenge to the software development. Here we present the current status of their development. The pipeline utilizes a difference image analysis technique to discover candidate transient sources after making correction of image distortion. In the early phase of the program, final selection of transient sources from candidates will mainly rely on multi-filter, multi-epoch and multi-site screening as well as human inspection, and an interactive web-based system is being developed for this purpose. Eventually, machine learning algorithms, based on the training set collected in the early phase, will be used to select true transient sources from candidates.

  • PDF

Intensive Monitoring Survey of Nearby Galaxies

  • Choi, Changsu;Im, Myungshin;Sung, Hyun-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.79.1-79.1
    • /
    • 2015
  • We describe our ongoing project, Intensive Monitoring Survey of Nearby Galaxies. This survey is designed to study transients such as Supernovae (SNe) in nearby galaxies. Our targets are UV-bright (MUV < -18.4) and nearby (d < 50 Mpc) 50 galaxies selected from a GALEX catalog, whose star formation rates are larger than normal galaxies. High star formation in these galaxies ensures that core-collapse supernova explosions occur more frequently in them than normal galaxies. By monitoring them with a short cadence of a few hours, we expect to discover 5 SNe/yr events. Most importantly, we hope to construct very early light curves in rising phase for some of them, which enables us to understand better the physical properties of progenitor star and the explosion mechanism. To enable such a high cadence observation, we constructed a world wide telescope network covering northern, southern hemisphere distributed over a wide range of longitudes (Korea, US, Australia, Uzbekistan and Spain). Data reduction pipe line, detection and classification algorithms are being developed for an efficient processing of the data. Using the network of telescopes, we expect to reach observe not only SNe but also other transients like GRBs, Asteroid, variable AGNs and gravitaional wave optical counter part.

  • PDF

Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

  • Yen, Tzu-Ching;Kong, Albert Kwok-Hing;Yatsu, Yoichi;Hanayama, Hidekazu;Nagayama, Takahiro;OISTER
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.159-162
    • /
    • 2013
  • We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a ${\gamma}$-ray emitting millisecond pulsar (MSP) in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the ${\gamma}$-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of ${\gamma}$-ray emitting pulsars -the 'black widows'- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

Magnitude Standardization Procedure for OWL-Net Optical Observations of LEO Satellites

  • Roh, Dong-Goo;Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Park, Sun-Youp;Park, Maru;Choi, Young-Jun;Bae, Young-Ho;Park, Young-Sik;Jang, Hyun-Jung;Cho, Sungki;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • As a governmentally approved domestic entity for Space Situational Awareness, Korea Astronomy and Space Science Institute (KASI) is developing and operating an optical telescopes system, Optical Wide-field PatroL (OWL) Network. During the test phase of this system, it is necessary to determine the range of brightness of the observable satellites. We have defined standard magnitude for Low Earth Orbit (LEO) satellites to calibrate their luminosity in terms of standard parameters such as distance, phase angle, and angular rate. In this work, we report the optical brightness range of five LEO Satellites using OWL-Net.

THE SOLAR-B MISSION

  • ICHIMOTO KIYOSHI;TEAM THE SOLAR-B
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.307-310
    • /
    • 2005
  • The Solar-B is the third Japanese spacecraft dedicated for solar physics to be launched in summer of 2006. The spacecraft carries a coordinated set of optical, EUV and X-ray instruments that will allow a systematic study of the interaction between the Sun's magnetic field and its high temperature, ionized atmosphere. The Solar Optical Telescope (SOT) consists of a 50cm aperture diffraction limited Gregorian telescope and a focal plane package, and provides quantitative measurements of full vector magnetic fields at the photosphere with spatial resolution of 0.2-0.3 arcsec in a condition free from terrestrial atmospheric seeing. The X-ray telescope (XRT) images the high temperature (0.5 to 10 MK) corona with improved spatial resolution of approximately 1 arcsec. The Extreme Ultraviolet Imaging Spectrometer (EIS) aims to determine velocity fields and other plasma parameters in the corona and the transition region. The Solar-B telescopes, as a whole, will enable us to explore the origins of the outer solar atmosphere, the corona, and the coupling between the fine magnetic structure at the photosphere and the dynamic processes occurring in the corona. The mission instruments (SOT/EIS/XRT) are joint effort of Japan (JAXA/NAO), the United States (NASA), and the United Kingdom (PPARC). An overview of the spacecraft and its mission instruments are presented.

THE EVOLUTIONARY STAGE OF H II REGION AND SPECTRAL TYPES OF MASSIVE STARS FROM KINEMATICS OF H2O MASERS IN W51 MAIN

  • Cho, Jae-Sang;Kan-Ya, Yukitoshi;Byun, Yong-Ik;Kurayama, Tomoharu;Choi, Yoon-Kyung;Kim, Mi-Kyoung
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.41-54
    • /
    • 2010
  • We report relative proper motion measurements of $H_{2}O$ masers in massive star-forming region W51 Main, based on data sets of VLBI observations for $H_{2}O$ masers at 22 GHz with Japanese VERA telescopes from 2003 to 2006. Data reductions and single-beam imaging analysis are to measure internal kinematics of maser spots and eventually to estimate the three-dimensional kinematics of $H_{2}O$ masers in W51 Main. Average space motions and proper motion measurements of $H_{2}O$ masers are given both graphical and in table formats. We find in this study that W51 Main appears to be associated with hyper-compact H II region with multiple massive proto-stars whose spectral types are of late O.

LEE SANG GAK TELESCOPE (LSGT): A REMOTELY OPERATED ROBOTIC TELESCOPE FOR EDUCATION AND RESEARCH AT SEOUL NATIONAL UNIVERSITY

  • IM, MYUNGSHIN;CHOI, CHANGSU;KIM, KIHYUN
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.4
    • /
    • pp.207-212
    • /
    • 2015
  • We introduce the Lee Sang Gak Telescope (LSGT), a remotely operated, robotic 0.43-meter telescope. The telescope was installed at the Siding Spring Observatory, Australia, in 2014 October, to secure regular and exclusive access to the dark sky and excellent atmospheric conditions in the southern hemisphere from the Seoul National University (SNU) campus. Here, we describe the LSGT system and its performance, present example images from early observations, and discuss a future plan to upgrade the system. The use of the telescope includes (i) long-term monitoring observations of nearby galaxies, active galactic nuclei, and supernovae; (ii) rapid follow-up observations of transients such as gamma-ray bursts and gravitational wave sources; and (iii) observations for educational activities at SNU. Based on observations performed so far, we find that the telescope is capable of providing images to a depth of R = 21:5 mag (point source detection) at 5-σ with 15 min total integration time under good observing conditions.

Interim Results of Simultaneous Time Monitoring of SiO and $H_2O$ Masers Toward Water Fountain Sources

  • Kim, Jaeheon;Cho, Se-Hyung;Yoon, Dong-Hwan;Yun, Youngjoo;Byun, Do-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.77.2-77.2
    • /
    • 2013
  • We present the interim results of simultaneous time monitoring observations of $^{28}SiO$ v = 1, 2, J = 1-0, $^{29}SiO$ v = 0, J = 1-0 and $H_2O$ $6_{16}-5_{23}$ maser lines toward 10 known water fountain sources at a post-AGB stage. The observations have been carried out from 2009 June to 2013 September using the 21m single dish radio telescopes of the Korean VLBI Network. From six sources, we detected well separated red- and blue-shifted $H_2O$ maser features with large velocity ranges more than 100 km $s^{-1}$. From four sources, we detected red- and/or blue-shifted $H_2O$ maser features depended on observational epochs. However, we could not detected SiO maser emission from any sources and any epochs. For a representative water fountain source W43A, we obtained $H_2O$ maser spectra at 17 epochs which show a clear bipolar and discontinuous mass ejections. They also showed a periodic change between red-shifted and blue-shifted peaks. However, we need a more regular and short-time interval monitoring observations in order to fix the period and peak intensity variation interval.

  • PDF

Star formation and TDGs in the debris of interacting systems

  • Sengupta, Chandreyee;Dwarakanath, K.S.;Saikia, D.J.;Scott, T.C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.34.2-34.2
    • /
    • 2013
  • Star formation beyond the galaxy discs and the principles governing it have attracted a lot of recent attention and the advent of ultraviolet (UV) and mid-infrared (MIR) telescopes like the GALEX and Spitzer have enabled major advances in such studies. In order to study the HI gas properties such as the morphology, kinematics and column density distributions, and their correlation with the star forming zones, especially in the tidal bridges, tails and debris, we carried out an HI survey of a set of Spitzer-observed interacting systems using the Giant Metrewave Radio Telescope (GMRT). Here we present results from three of these systems, Arp86, Arp181 and Arp202. In Arp86, we detect excellent star-gas correlation in the star forming tidal bridges and tails. In Arp181, we find the two interacting galaxies to be highly gas depleted and the entire gas of the system is found in the form of a massive tidal debris about 70 kpc from the main galaxies. In all three cases, Arp86, Arp181 and Arp202, the tidal debris seem to host ongoing star formation. We also detect three new candidate tidal dwarf galaxies (TDG) in these systems with large quantities of gas associated with them.

  • PDF

WIDEBAND SPECTRAL DISPERSER MADE OF ZnS FOR EXOPLANET CHARACTERIZATION USING SPACE-BORNE TELESCOPES

  • Enya, Keigo;Fujishiro, Naofumi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.343-345
    • /
    • 2017
  • We present the development of a spectral dispersion device for wideband spectroscopy for which the primary scientific objective is the characterization of transiting exoplanets. The principle of the disperser is simple: a grating is fabricated on the surface of a prism. The direction of the spectral dispersion power of the prism is crossed with the grating. Thus, the prism separates the spectrum into individual orders while the grating produces a spectrum for each order. In this work, ZnS was selected as the material for the cross disperser, which was designed to cover the wavelength region, ${\lambda}=0.6-13{\mu}m$, with a spectral resolving power, $R{\geq}50$. A disperser was fabricated, and an evaluation of its surface was conducted. Two spectrometer designs, one adopting ZnS (${\lambda}=0.6-13{\mu}m$, $R{\geq}300$) and the other adopting CdZnTe (${\lambda}=1-23{\mu}m$, $R{\geq}250$), are presented. The spectrometers, each of which has no moving mechanical parts, consist simply of a disperser, a focusing mirror, and a detector.