• 제목/요약/키워드: Telemetry, Tracking and Command

검색결과 24건 처리시간 0.023초

RF COMPATIBILITY TEST BETWEEN KOMPSAT AND TTC STATION

  • Ahn, Sang-Il;Choi, Hae-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.191-198
    • /
    • 1999
  • Results of RF compatibility test between KOMPSAT(Korea Multi-Purpose SATellite) and TTC(Tracking, Telemetry, and Command) station are described. S/C(Spacecreft) RF Test, telemetry test, command test, ranging test, and tracking receiver test were performed with respect to pass/fail criteria. To provide physical RF interface between KOMPSAT and TTC equipment, direct low cable and antenna-to-antenna interface were implemented. Through RF compatibility test, it was fully demonstrated that KOMPSAT and TTC equipment are functionally workable.

  • PDF

SPIN-AXIS ATTITUDE DETERMINATION PROGRAM FOR THE GEOSYNCHRONOUS TRANSFER ORBIT SPAECRAFT

  • Lee, Byoung-Sun;Eun, Jong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • 제10권1호
    • /
    • pp.1-16
    • /
    • 1993
  • Three typer of spin-axis attitude determination program for the geosynchronous transfer orbit spacecraft are developed. Deterministic closed-from algorithm, batch least-square algorithm and stabilized Kalman filter algorithm are used for implemetation of three programs. EUROSTAR bus model from British Aerospace is used for attitude sensor modelling. Attitude determinations using three programs are performed for the simulated sensor data according to INMARSAT 2-F1 prelaunch mission analysis.

  • PDF

Description of Range Control System in Space Center

  • Yun, Sek-Young;Choi,Yong-Tae;Lee, Hyo-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.53.2-53
    • /
    • 2002
  • NARO Space Center is being developed as a national project for the Korea Space Development Program. Among the major missions of the Space Center, the Range Control System is the focal point for all command and control operation of the Space Center. The acquired data from the Tracking Stations and the on-site facilities is processed and distributed in the Control Center. Data processing or data fusion is needed for the exact tracking of the Launch Vehicle from several tracking systems. The first phase, which is the best telemetry source is selected among data streams that are received from each telemetry stations using some pre-defined criterion. Trajectory data and major telemetry parameters...

  • PDF

저궤도 위성 관제 시스템의 링크 특성 분석 (Link anlaysis of TTC system for LEO satellite)

  • 장대익;이점훈;김영완;최재익
    • 전자공학회논문지S
    • /
    • 제34S권7호
    • /
    • pp.39-47
    • /
    • 1997
  • The mission of the TTC system is to acquire and process the telemetry data from the satellite and to provide mission planning and satellite control for the target stellite system. In this paper, the transmission scheme for the Tracking, Telemetry and Command(TTC) system of satelliteis described and determined according to the recommendation of CCSDS, and the channel characteristics are analyzed according to modulation method. Expecially, we introduced the concepts of carrier vs. telemetry data power ratio which causes the channel performance to degrade, and analyzed the effects of transmission performance according to the power ratio of carrier vs. telemetry data and the modulation index. The channel of the LEO TTC sytem is different with usual satellite communication system. So, we have generalized the link budget of TTC sytem for using the link budget of ground station well-known and proposed the determination method of modultion indices for improveing channel performance.

  • PDF

KOMPSAT-2 RF COMPATIBILITY TEST FOR S-BAND

  • Cho Seung-Won;Youn Young-Su;Choi Jong-Yeon;Choi Seok-Weon
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.344-346
    • /
    • 2004
  • KOMPSAT-2 (Korea Multi Purpose Satellite 2) which is scheduled to launch in 2005 year will communicate with KARI TTC (Tracking, Telemetry, and Command) station flying along sun synchronous orbits (685 km). The command from KARI TTC passes S-band omni-antenna, RF assembly, and transponder and finally reachs OBC (On Board Computer). The telemetry from KOMPSAT-2 arrives at KARI TTC through inverse procedure. In this paper, RF compatibility test between KOMPSAT-2 and KARI TTC station is demonstrated. RF interface for this test was established through real space and uplink signal test and downlink signal test and uplink & downlink signal test were performed.

  • PDF

Analysis of the Antenna Pointing Instability of a Satellite in Spin-Stabilized Injection Mode

  • Kang, Ja-Young;Shin, Kwang-Keun
    • ETRI Journal
    • /
    • 제16권2호
    • /
    • pp.27-41
    • /
    • 1994
  • A new mathematical model to predict the beam pointing instability of a nonconservative two-body satellite system in spinning injection mode has been developed by using Newton-Euler and projection methods. Since the on-axis and null axis of the omni antenna with toroidal pattern beam form a right angle, wobbling of the antenna on-axis is measured by determining the Euler angles which represent the orientation of the satellite's spin axis. Because of the complexity of the system which is a time varying, nonstationary, nonlinear dynamical system, a numerical method is used for the analysis. Computer simulation results present the effects of the mass distribution and internal mass motion on the antenna beam pointing.

  • PDF

Development of ETRI satellite simulator-ARTSS

  • Kang, J.Y.;Lee, S.;Hong, K.Y.;Shin, K.K.;Rhee, S.W.;Choi, W.S.;Oh, H.S.;Kim, J.M.;Chung, S.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.49-53
    • /
    • 1994
  • Advanced Real-Time Satellite Simulator(ARTSS) has been developed to support the telemetry, tracking and command operations of the ETRI satellite control system and to provide satellite engineers a more powerful and informative satellite simulations tool on the desktop. To provide extensive simulation functions for a communication satellite system in the pre-operational and operational missions, ARTSS uses a geosynchronous orbit(GEO) satellite model consisting of the attitude and orbit control subsystem, the power subsystem, the thermal subsystem, the telemetry, command and ranging subsystem, and the communications payload subsystem. In this paper, the system features and functions are presented and the satellite subsystem models are explained in detail.

  • PDF

저궤도 위성용 TT&C 안테나의 설계 (TT&C Antenna Design for LEO Satellite)

  • 이광재;우덕제;이택경;이재욱;이우경
    • 한국전자파학회논문지
    • /
    • 제21권6호
    • /
    • pp.642-650
    • /
    • 2010
  • 본 논문에서는 주어진 임무에 대한 저궤도 위성용 TT&C(Telemetry Tracking and Command system) 안테나를 설계하기 위해 먼저 링크 버짓을 통해 요구 성능을 도출하고, 이에 따라 안테나를 설계한다. 전제된 임무 궤도는 태양 동기 원형 궤도이며, 지구 및 우주 관측 임무를 수행한다. TT&C 시스템의 링크 버짓을 설계하여 최소 3dB 마진을 가지기 위한 안테나의 요구 이득과 빔 폭을 도출하였으며, 이렇게 설계된 위성용 TT&C 안테나는 넓은 빔 폭을 가지는 원형 편파 턴스타일 안테나이다. 한편, 안테나를 위성에 설치하였을 때 방사 특성의 변화를 확인하였으며, 최적의 설치 위치를 제안하였다. 또한 설계된 턴스타일 안테나의 전기적 성능을 바탕으로 TT&C링크 모의실험을 통해 임무 중 안테나의 성능을 검증한다.