• Title/Summary/Keyword: Tele-manipulation

Search Result 11, Processing Time 0.029 seconds

Tele-Manipulation of ROBHAZ-DT2 for Hazard Environment Applications

  • Ryu, Dong-Seok;Lee, Jong-Wha;Yoon, Seong-Sik;Kang, Sung-Chul;Song, Jae-Bok;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2051-2056
    • /
    • 2003
  • In this paper, a tele-manipulation in explosive ordnance disposal(EOD) applications is discussed. The ROBHAZ-DT2 is developed as a teleoperated mobile manipulator for EOD. In general, it has been thought that the robot must have appropriate functions and accuracy enough to handle the complicated and dangerous mission. However, the research on the ROBHAZ-DT2 revealed that the teleoperation causes more restrictions and difficulties in EOD mission. Thus to solve the problem, a novel user interface for the ROBHAZ-DT2 is developed, in which the operator can interact with various human senses (i.e. visual, auditory and haptic sense). It enables an operator to control the ROBHAZ-DT2 simply and intuitively. A tele-manipulation control scheme for the ROBHAZ-DT2 is also proposed including compliance control via force feedback. It makes the robot adapt itself to circumstances, while the robot faithfully follows a command of the operator. This paper deals with a detailed description on the user interface and the tele-manipulation control for the ROBHAZ-DT2. An EOD demonstration is conducted to verify the validity of the proposed interface and the control scheme.

  • PDF

Ergonomic Analysis of Tele-operation Tasks and Remote Handling Devices for a Pyroprocessing Facility

  • Yu, Seung Nam;Lee, Jong Kwang;Kim, Sung Hyun;Park, Byung Suk;Kim, Ki Ho;Cho, Il Je
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-26
    • /
    • 2013
  • Objective: The aim of this study is ergonomic analysis of tele-operation tasks using modified remote handling devices dedicated to the cell of PRIDE(PyRoprocess Integrated inactive DEmonstration facility) in KAERI(Korea Atomic Energy Research Institute). Background: Tele-operation manipulators of the PRIDE are applied to perform the remote handling and management of pyroprocessing facilities. Generally, these kinds of systems are composed of master-slave system and its peripherals installed along a wall or ceiling of the cell, and the manipulators transmit the user's own motion to grippers directly. However, a user convenience and intuitiveness while operating the manipulators have not been fully considered in research fields. Method: This study tries to analyze the ergonomic performance of remote handling manipulators in the developed cell facility. It was included that the analysis of operator's capability for his/her own motion range of upper arm while manipulating the MSM, considerations of its manipulation margin and related tool modifications to improve the remote handling performance. Conclusion: The test results of several remote handling tasks performed in PRIDE are represented, and adequate operation strategies for the tele-operation system of hot-cell type facilities are proposed. Application: The knowledge represented in this study can be utilized to improve a tele-operation system operated in a large-scale hot-cell system.

Collaborative 3D Design Workspace for Geographically Distributed Designers - With the Emphasis on Augmented Reality Based Interaction Techniques Supporting Shared Manipulation and Telepresence - (지리적으로 분산된 디자이너들을 위한 3D 디자인 협업 환경 - 공유 조작과 원격 실재감을 지원하는 증강현실 기반 인터랙션 기법을 중심으로 -)

  • SaKong Kyung;Nam Tek-Jin
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.71-80
    • /
    • 2006
  • Collaboration has become essential in the product design process due to internationalized and specialized business environments. This study presents a real-time collaborative 3D design workspace for distributed designers, focusing on the development and the evaluation of new interaction techniques supporting nonverbal communication such as awareness of participants, shared manipulation and tele-presence. Requirements were identified in terms of shared objects, shared workspaces and awareness through literature reviews and an observational study. An Augmented Reality based collaborative design workspace was developed, in which two main interaction techniques, Turn-table and Virtual Shadow, were incorporated to support shared manipulation and tele-presence. Turn-table provides intuitive shared manipulation of 3D models and physical cues for awareness of remote participants. Virtual shadow supports natural and continuous awareness of location, gestures and pointing of partners. A lab-based evaluation was conducted and the results showed that interaction techniques effectively supported awareness of general pointing and facilitated discussion in 3D model reviews. The workspace and the interaction techniques can facilitate more natural communication and increase the efficiency of collaboration on virtual 3D models between distributed participants (designer-designer, engineer, or modeler) in collaborative design environments.

  • PDF

Development of Tele-operation Interface and Stable Navigation Strategy for Humanoid Robot Driving (휴머노이드 로봇의 안전한 차량 주행 전략 및 원격 제어 인터페이스 개발)

  • Shin, Seho;Kim, Minsung;Ahn, Joonwoo;Kim, Sanghyun;Park, Jaeheung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.904-911
    • /
    • 2016
  • This paper presents a novel driving system by the humanoid robot to drive a vehicle in disaster response situations. To enhance robot's capability for substituting human activities in responding to natural and man-made disaster, the one of prerequisite skills for the rescue robot is the mounted mobility to maneuver a vehicle safely in disaster site. Therefore, our driving system for the humanoid is developed in order to steer a vehicle through unknown obstacles even under poor communication conditions such as time-delay and black-out. Especially, the proposed system includes a tele-manipulation interface and stable navigation strategies. First, we propose a new type of path estimation method to overcome limited communication. Second, we establish navigation strategies when the operator cannot recognize obstacles based on Dynamic Window Approach. The effectiveness of the proposed developments is verified through simulation and experiments, which demonstrate suitable system for driving a vehicle in disaster response.

Multi-Camera Vision System for Tele-Robotics

  • Park, Changhwn;Kohtaro Ohba;Park, Kyihwan;Sayaka Odano;Hisayaki Sasaki;Nakyoung Chong;Tetsuo Kotoku;Kazuo Tanie
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.6-25
    • /
    • 2001
  • A new monitoring system is proposed to give direct visual information of the remote site when working with a tele-operation system. In order to have a similar behavior of a human when he is inspecting an object, multiple cameras that have different view point are attached around the robot hand and are switched on and elf according to the operator´s motion such as joystick manipulation or operator´s head movement. The performance of the system is estimated by performing comparison experiments among single camera (SC) vision system, head mount display (HMD)system and proposed multiple camera (MC) vision system by applying a task to several examines. The reality, depth feeling and controllability are estimated for the examines ...

  • PDF

Development of Master-Slave Type Tele-Operation Control Robotic System for Arrhythmia Ablation (부정맥 시술을 위한 마스터-슬레이브 원격제어·로봇 시스템 개발)

  • Moon, Youngjin;Park, Sang Hoon;Hu, Zhenkai;Choi, Jaesoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.585-589
    • /
    • 2016
  • Recently, the robotic assist system for cardiovascular intervention gets continuously growing interest. The robotic cardiovascular intervention systems are largely two folds, systems for cardiac ablation procedure assist and systems for vascular intervention assist. For the systems, the clinician controls the catheter inserted through blood vessel to the heart via a master console or master manipulator. Most of the current master manipulators have structure of joystick-like pivoting 2 degree of freedom (DOF) handle in the core, which is used in parallel with other sliding switches and input devices. It however is desirable to have customized and optimized design manipulator that can provide clinician with intuitive control of the catheter motion fully utilizing the advantage of the use of robotic structure. A 6 DOF kinematic mechanism that can capture the motion control intention of the clinician in translational 3 DOF and rotational 3 DOF is proposed in this paper. Also, a master-slave motion relationship specially designed for the cardiac catheter manipulation motion is proposed and implemented in an experimental prototype. Design revision for implementation of more efficient motion and experiment in combination with an experimental slave robot system for catheter manipulation are underway.

COSMO - low cost force/moment sensor for robot teaching (COSMO - 로봇교시를 위한 저가형 6축 힘/모멘트 센서)

  • ;Choi, Myoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1621-1623
    • /
    • 1997
  • Use of teaching pendant is the most widespread and economical way to teach desired motion to robots. It is also very primitive,time consuming and ineffective way of teaching which has not changed since the early days of robot. In order to reduce the teaching effor, a new efficient form of teaching is needed. Also, the recent robotics research trend into service robots such as home robot, nurse robot and medical robot calls for a new teaching method which is both easy and inexpensive. In this paper, the design and operation principle of a low cost force/moment sensor is presented. The proposed sensor architecture is so simple and inexpensive that it opens the prospect for a new paradigm of robot teaching which is easy and efficinet. Other prospective areas of application are tele-manipulation of robots wher it can be used in master arm, and virtual environment where it can be used as an user input device.

  • PDF

Implementation of automatic mode for remote impact wrench task (로보트를 이용한 원격조작 임팩트렌치 작업의 자동수행 기능부 구현)

  • 박영수;박병석;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.832-837
    • /
    • 1991
  • After many years of proliferation, the nuclear industry is indebted for a formidable consequence, the safe management of spent fuel. Naturally, the high radioactivity involved with such process motivates the development of effective telerobotic systems. Nevertheless, the existing master-slave type of tele manipulators are limited in effectiveness by the human operator's limited sensory and manipulation capabilities. This paper presents the result of a research effort to resolve such problems by assigning the slave manipulator a certain degree of intelligence; sensing and actuation. In the presented system, a perception-action loop is achieved using ultrasonic range sensor and laser distance sensor interfaced with the PUMA 760 industrial robot system, and applied to automating impact wrenching task for unbolting the lid of nuclear spent fuel cask. The perception-action loop performs determination of the cask location, collision avoidance and centering of the impact wrench onto the bolt head. To aid the insertion task and to provide versatility a mounting module consisting of an RCC device and an automatic tool changer is designed and implemented. The performance of the developed system is tested on the model cask and the result is given.

  • PDF

Fast and Fine Tracking Control System Using Coarse/Fine Compound Actuation

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.463-463
    • /
    • 2000
  • A dual-stage positioner for fast and fine robotic manipulations is presented. By adopting the merits of both coarse and fine actuator, a desirable system having the capacity of large workspace with high resolution of motion is enabled. We have constructed an ultra precision XY positioner with dual-stage mechanism where the PZT driven fine stage is mounted on the motor driven XY positioner and applied it to fine tracking controls and micro-tele operations as a slave manipulator. We describe essential merits of the compound actuation mechanism and some control strategies to successfully utilize it with proper servo system design. Through experimental results, the effectiveness of the coarse/fine manipulation by the dual-stage positioner will be shown.

  • PDF

The Effect of Asynchronous Haptic and Video Feedback on Teleoperation and a Comment for Improving the Performance (비 동기화된 촉각과 영상 시간지연이 원격조종로봇에 미치는 영향과 성능 향상을 위한 조언)

  • Kim, Hyuk;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • In this paper, we investigate the effect of asynchronous haptic and video feedback on the performance of teleoperation. To analyze the effect, a tele-manipulation experiment is specially designed, which operator moves square objects from one place to another place by using master/slave telerobotic system. Task completion time and total number of falling of the object are used for evaluating the performance. Subjective study was conducted with 10 subjects in 16 different combinations of video and haptic feedback while participants didn't have any prior information about the amount of each delay. Initially we assume that synchronized haptic and video feedback would give best performance. However as a result, we found that the accuracy was increased when haptic and video feedback was synchronized, and the completion time was decreased when one of the feedback (either haptic or video) was decreased. Another interesting fact that we found in this experiment is that it showed even better accuracy when haptic information arrives little bit earlier than video information, than the case when those are synchronized.