• Title/Summary/Keyword: Tele-Robot

Search Result 102, Processing Time 0.026 seconds

Event Based Tele-Operation with Variable Holding Time (가변 지속시간을 갖는 이벤트 기반 원격제어)

  • 박준영;박장현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.70-77
    • /
    • 2002
  • Necessity of the tole-operation has been increased in many fields. Since the Internet is inexpensive and available all over the world, it is a strong candidate for the transmission media of the tole-operation. However, the Internet has random time delays that may cause instability in the system especially if the tole -operation is bilateral. In the past few years many attempts have been made to overcome the random time delay, So far, they are still insufficient in terms of performance. The ‘Variable holding time’ is introduced to improve the performance of the ‘Event based tole-operation’ which controls a system with a non-time action reference. By holding each event for proper time, the system can quickly respond and be stabilized. The proper holding time should be selected based on the characteristics of the task that the system performs. The factors that reflect those characteristics are investigated. The fuzzy logic is employed to obtain the proper holding time for each event while the tole-operation system is in operation. The experimental results presented in this paper verify effectiveness of the proposed method.

SPO based Reaction Force Estimation and Force Reflection Bilateral Control of Cylinder for Tele-Dismantling (원격해체 작업을 위한 유압 시스템의 SPO 기반 반력 추정 및 힘 반향 양방향 원격제어)

  • Cha, Keum-Gang;Yoon, Sung Min;Lee, Min Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • For dismantling heavy structure under special environment in radioactivity, there are many problems which should be tele-operated and feedback a cutting force for cutting a thick structure such as concrete. When operator dismantles a thick heavy concrete structure, it is in sufficient to judge whether robot is contacting or not with environment by using only vision information. To overcome this problem, force feedback and impedance model based bilateral control are introduced. The sliding mode control with sliding perturbation observer (SMCSPO) based bilateral control is applied and surveyed to a single rod hydraulic cylinder in this paper. The sliding mode control is used for robustness against a disturbance. The sliding perturbation observer is used for estimation of a reaction force such as cutting force. The bilateral control is executed using the information of reaction force estimated by SMCSPO. The contribution of this paper is that the estimation method and bilateral control of the single rod hydraulic cylinder are introduced and discussed by experiment.

Gaze Matching Based on Multi-microphone for Remote Tele-conference (멀티 마이크로폰 기반 원격지 간 화상회의 시선 일치 기법)

  • Lee, Daeseong;Jo, Dongsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.429-431
    • /
    • 2021
  • Recently, as an alternative to replace face-to-face meetings, video conferencing systems between remote locations has increased. However, video conferencing systems have limitations in terms of mismatch of the eyes of remote users. Therefore, it is necessary to apply a technology that can increase the level of immersion in video conferences by matching the gaze information of participants between different remote locations. In this paper, we propose a novel technique to realize video conferencing with the same gaze by estimating the speaker's location based on a multi-microphone. Using our method, it can be applied to various fields such as robot interaction and virtual human interface as well as video conferencing between remote locations.

  • PDF

Strategies for Driving and Egress for the Vehicle of a Humanoid Robot in the DRC Finals 2015 (DRC Finals 2015 에서 휴머노이드 로봇의 자동차 운전과 하차에 관한 전략)

  • Ahn, DongHyun;Shin, JuSeong;Jun, Youngbum;Sohn, Kiwon;Jang, Giho;Oh, Paul;Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.912-918
    • /
    • 2016
  • This paper presents various strategies for humanoid vehicle driving and egress tasks. For driving, a tele-operating system that controls a robot based on a human operator's commands is built. In addition, an autonomous assistant module is developed for the operator. Normal position control can result in severe damage to robots when they egress from vehicles. To prevent this problem, another approach that mixes various joint control techniques is adopted in this study. Additionally, a footplate is newly designed and attached to the vehicle floor for the ground landing phase of the egress task. The attached plate enables the robot to step down onto the ground in a safe manner. For stable locomotion, a balance controller is designed for the humanoid. For the design of the controller, the robot is modeled using an inverted pendulum that consists of a spring and a damper. Then, a state feedback controller (with pole placement and a state observer) is built based on the simplified model. Many approaches that are presented in this paper were successfully applied to a full-sized humanoid, DRC-HUBO+, in the DARPA Robotics Challenge Finals, which were held in the United States in 2015.

A Study on the Tele-medicine Robot System with Face to Face Interaction

  • Shin, Dae Seob
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.293-301
    • /
    • 2020
  • Consultation with the patient and doctor is very important in the examination. However, if the consultation cannot be done directly, such as corona virus, it is difficult for the doctor to determine the patient's condition more accurately. Recently, an image counseling system has been developed based on the Internet, but in the case of heart disease, remote medical counseling cannot be performed because it is not possible to stethoscope the heart sounds remotely. In order to solve this problem, it is necessary to develop an interactive mobile robot capable of remote medical consultation, and a doctor and a patient should be able to set a planting sound during consultation and transmit it in real time. In this paper, we developed a robot that can remotely control a medical counseling robot to move to a hospital room where patients are hospitalized, and to consult a patient in the room remotely from a doctor's office. A remote medical imaging stethoscope system for real-time heart sound transmission is presented. The proposed system is a kind of P2P communication that transmits video information, audio information, and control signal independently through webRTC platform, so that there is no data loss. Consults and sees doctors in real time and finds it more effective than traditional methods for patient security. The system implemented in this paper will be able to perform remote medical care in the place where the spread of diseases between humans like the recent corona 19 as well as the remote medical care of heart disease patients in the future.

Rough Terrain Negotiable Mobile Platform with Passively Adaptive Double-Tracks and Its Application to Rescue Missions and EOD Missions

  • Lee, Woo-Sub;Kang, Sung-Chul;Kim, Mun-Sang;Shin, Kyung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1048-1053
    • /
    • 2005
  • This paper presents design and integration of the ROBHAZ-DT3, which is a newly developed mobile robot system with chained double-track mechanisms. A passive adaptation mechanism equipped between the front and rear body enables the ROBHAZ-DT3 to have good adaptability to uneven terrains including stairs. The passive adaptation mechanism reduces energy consumption when moving on uneven terrain as well as its simplicity in design and remote control, since no actuator is necessary for adaptation. Based on this novel mobile platform, a rescue version of the ROBHAZ-DT3 with appropriate sensors and a semi-autonomous mapping and localization algorithm is developed to participate in the RoboCup2004 US-Open: Urban Search and Rescue Competition. From the various experiments in the realistic rescue arena, we can verify that the ROBHAZ-DT3 is reliable in traveling rugged terrain and the proposed mapping and localization algorithm are effective in the unstructured environment with uneven ground. The another application is an military robot for an EOD(Explosive Ordnance Disposal) and reconnaissance mission. The military version of the ROBHAZ-DT3 with a water disrupter, a thermal scope and a long distance wireless communication device is developed and sent to the area of military tactics in Iraq. Consequently, the feasibility of the military version of ROBHAZ-DT3 is verified.

  • PDF

The effects of an increase in self - determination experience on the behavior of young children with autism spectrum disorder by telepresence robot. (텔레프레젠스 로봇을 이용한 자기결정 경험의 증대가 자폐범주성 장애유아의 행동에 미치는 효과 (자기결정 활동 멀티미디어 콘텐츠의 적용을 통하여))

  • Kim, Su-Jin
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.12 no.1
    • /
    • pp.38-45
    • /
    • 2018
  • The purpose of this study was to investigate the effects of an increase in self - determination experience on the behavior of young children with autism spectrum disorder by telepresence robot. As for research method, the study used AB design, two selected children engaged in activities with a telepresence robot in free play time in the morning. The activities were conducted in 19 sessions, twice a week, 15 to 40 minutes each. To investigate the effect of the activity on the child's behavior was observed using the behaviors of free play time and work time in the afternoon. All the process was recorded by a camera and then analyzed by frequency recording. The results of the study are as follows. First, the participation of young children with autism spectrum disorder in free play time increased. Second, choice-making or preference behavior of young children with autistic spectrum disorder were increased. This study suggests that increasing the self-determination experience of young children with autism spectrum disorders using telepresence robots increases their participation and increases their choice-making or preference behavior.

A Robot End-effector for Biopsy Procedure Automation with Spring-Triggered Biopsy Gun Mechanism (스프링 격발형 생검총 구조를 가진 생검 시술 자동화 로봇 말단장치)

  • Won, Jong-Seok;Moon, Youngjin;Park, Sang Hoon;Choi, Jaesoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.590-596
    • /
    • 2016
  • Biopsy is a typical needle type intervention procedure performed under radiographic image equipment such as computed tomography (CT) and cone-beam CT. This minimal invasive procedure is a simple and effective way for identifying cancerous condition of a suspicious tissue but radiation exposure for the patients and interventional radiologists is a critical problem. In order to overcome such trouble and improve accuracy in targeting of the needle, there have been various attempts using robot technology. Those devices and systems, however, are not for full procedure automation in biopsy without consideration for tissue sampling task. A robotic end-effector of a master-slave tele-operated needle type intervention robot system has been proposed to perform entire biopsy procedure by the authors. However, motorized sampling adopted in the device has different cutting speed from that of biopsy guns used in the conventional way. This paper presents the design of a novel robotic mechanism and protocol for the automation of biopsy procedure using spring-triggered biopsy gun mechanism. An experimental prototype has been successfully fabricated and shown its feasibility of the automated biopsy sequence.

Design of an Economic Service Robot Hand Based on Biomimetics and TRIZ (생체 모방학과 트리즈를 이용한 보급형 서비스 로봇 핸드의 설계)

  • Ko, Hun-Keon;Cho, Chang-Hee;Kim, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1741-1747
    • /
    • 2010
  • This work presents a study on the design of an economic service robot hand for tele-presence manipulators. The conceptual design of new robot hand is derived from biomimetics approach. Guided by the analysis of human arm' musculoskeletal structure, the fingers are actuated by cables and actuators in the forearm. High tension in the cables is achieved by screw-nut mechanism driven by DC motors. A set of combination springs is incorporated in each of the screw-nut mechanism for easy control of gripping force. The first prototype revealed difficulties with finger control and coupling problem between gripping force and wrist movement. The solutions to these problems have been derived from the contradiction analysis of TRIZ. The second design has been verified by tests on various objects with different weight and shape for full range of wrist motion.

Development of Teleoperation System with a Forward Dynamics Compensation Method for a Virtual Robot (가상 슬레이브 정동역학 보정에 기반한 원격제어 시스템 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.322-329
    • /
    • 2018
  • Teleoperation is defined with a master device that gives control command and a slave robot in a remote site. In this field, it is common that a human operator executes and experiences teleoperation with a virtual slave, and preliminary learns dynamic characteristic and network environment from both agents. Generally, a virtual slave has neglected forward dynamics and its kinematic model has been implemented in computer graphics. This makes a operator to experience actual feelings. This paper proposes a dynamic teleoperation model in which a robotic forward model is applied. Also, a novel compensation method is proposed to reduce the numerical error problems in forward dynamics caused by low control sampling rate. Finally, its results will be compared to the teleoperation in an actual environment.