• Title/Summary/Keyword: Tele-Operation Robot

Search Result 60, Processing Time 0.023 seconds

Tele-operation of A Low-cost Un-autonomous Mobile Robot Using A New Fuzzy Command Smoothing Concept (새로운 퍼지 명령 스무딩 개념을 이용한 저가형 비자율주행 이동로봇의 원격제어)

  • Yoo Bong-Soo;Joh Joongseon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.809-815
    • /
    • 2004
  • Researches on mobile robots have been mainly focused on the autonomous navigation and a lot of interesting results have been published so far. Most of applications are, however, fancy, unpractical, and very expensive to be used for 'UN-expensive' purpose. Well-known soccer robot may be an example of unpractical application. Un-autonomous mobile robot has, however, potential for a lot of practical applications. Especially, tele-operation of the un-autonomous mobile robot may the central issue of research. Major research topics for the tele-operated un-autonomous mobile robot include development of a force reflecting joystick for tele-operation and development of a sophisticated algorithm for smooth tele-operation. A new concept named fuzzy command smoothing algorithm is proposed in this paper in order to provide smooth motion to a tele-operated mobile robot. It gives smooth motion command to the mobile robot from possibly abrupt quick turn motion command of the joystick using fuzzy logic. Simulation results verify the usefulness of the proposed algorithm.

Methodological Comparison of Visualization for Tele-operated Robot Visual Guidance (원격 로봇 비주얼 가이던스를 위한 가상벽 가시화 방법론 비교)

  • Kim, Dong Yeop;Shin, Dong-In;Hwang, Jung-Hoon;Kim, Young-Ouk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.877-882
    • /
    • 2016
  • Disaster robots have accepted tele-operation in order to share the intelligence of human operators and robot systems. Virtual wall is one of the tele-operation technology to support recognition of human operator. If the virtual wall can block the robot from dangers, the operator will feel comfortable and can concentrate on fundamental missions. In this paper, we proposes and compares three methods for virtual wall visualization in tele-operation using 3D reconstruction. First is a virtual wall visualized only with edges. A wall filled with transparent color is the second method. Finally, third method is a texture-mapped virtual wall. In the experiments, we discuss their merits and demerits in view of robot tele-operation.

The Development of String type Tele-operation Controller for 3D Environment (3D작업 수행을 위한 string형 원격 제어기 개발)

  • 심형준;차인혁;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.153-160
    • /
    • 1998
  • A master-slave system for tele-operation had been developed and tested for several decades. In this paper the master robot is composed of several wires and provides position information of the handle which is driven by a operator within the master robot work space. A PC is used for the command calculation for a slave robot. This paper deals with the relation between the number of strings and D.O.F of the master robot, control method of the slave robot during the operation and the monitoring method over the working area by the computer graphics simulation. The D.O.F of the master robot can be modified by adding or subtracting some strings. The controller of the slave robot uses the advanced PD control method to keep the performance against varying working load.

  • PDF

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

Tele-operation of a Mobile Robot Using Force Reflection Joystick with Single Hall Sensor (단일 홀센서 힘반영 조이스틱을 이용한 모바일 로봇 원격제어)

  • Lee, Jang-Myung;Jeon, Chan-Sung;Cho, Seung-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 2006
  • Though the final goal of mobile robot navigation is to be autonomous, operators' intelligent and skillful decisions are necessary when there are many scattered obstacles. There are several limitations even in the camera-based tele-operation of a mobile robot, which is very popular for the mobile robot navigation. For examples, shadowed and curved areas cannot be viewed using a narrow view-angle camera, especially in bad weather such as on snowy or rainy days. Therefore, it is necessary to have other sensory information for reliable tele-operations. In this paper, sixteen ultrasonic sensors are attached around a mobile robot in a ring pattern to measure the distances to obstacles. A collision vector is introduced in this paper as a new tool for obstacle avoidance, which is defined as a normal vector from an obstacle to the mobile robot. Based on this collision vector, a virtual reflection force is generated to avoid the obstacles and then the reflection force is transferred to an operator who is holding a joystick to control the mobile robot. Relying on the reflection force, the operator can control the mobile robot more smoothly and safely. For this bi-directional tele-operation, a master joystick system using a hall sensor was designed to resolve the existence of nonlinear sections, which are usual for a general joystick with two motors and potentiometers. Finally, the efficiency of a force reflection joystick is verified through the comparison of two vision-based tele-operation experiments, with and without force reflection.

  • PDF

Robot Operation Management in Internet TeleCare Systems

  • Hou, Chunhai;Jia, Songmin;Ye, Gang;Takase, Kunikatsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.50.4-50
    • /
    • 2002
  • $\textbullet$ Definition of TeleCare $\textbullet$ Motivations behind Internet TeleCare with Robots $\textbullet$ Framework of Robot Operation Management $\textbullet$ Database Structure $\textbullet$ Chat Room Conference $\textbullet$ Remote Robot Control by Softswitch $\textbullet$ Experimental Results and Conclusion

  • PDF

Tele-Operation of Dual Arm Robot Using 3-D vision

  • Shibagami, Genjirou;Itoh, Akihiko;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.386-390
    • /
    • 1998
  • A master-slave system is proposed as a teaching device for a dual arm robot. The slave robots are remotely controlled by two delta-type master arms. In order to help the operator to observe the target object from the desired position and desired direction, cameras are mounted on a specialized manipulator, Movements of two slave arms are coordinated with that of the cameras. Due to this coordinated movements, the operator needs not to care the geometrical relation between the cameras and the slave robots.

  • PDF

Internet Based Tele-operation of the Autonomous Mobile Robot (인터넷을 통한 자율이동로봇 원격 제어)

  • Sim, Kwee-Bo;Byun, Kwang-Sub
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.692-697
    • /
    • 2003
  • The researches on the Internet based tole-operation have received increased attention for the past few years. In this paper, we implement the Internet based tele-operating system. In order to transmit robustly the surroundings and control information of the robot, we make a data as a packet type. Also in order to transmit a very large image data, we use PEG compressive algorithm. The central problem in the Internet based tele-operation is the data transmission latency or data-loss. For this specific problem, we introduce an autonomous mobile robot with a 2-layer fuzzy controller. Also, we implement the color detection system and the robot can perceive the object. We verify the efficacy of the 2-layer fuzzy controller by applying it to a robot that is equipped with various input sensors. Because the 2-layer fuzzy controller can control robustly the robot with various inputs and outputs and the cost of control is low, we hope it will be applied to various sectors.

Position Estimation of a Mobile Robot Based on USN and Encoder and Development of Tele-operation System using Internet (USN과 회전 센서를 이용한 이동로봇의 위치인식과 인터넷을 통한 원격제어 시스템 개발)

  • Park, Jong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.55-61
    • /
    • 2009
  • This paper proposes a position estimation of a mobile robot based on USN(Ubiquitous Sensor Network) and encoder, and development of tele-operation system using Internet. USN used in experiments is based on ZigBee protocol and has location estimation engine which uses RSSI signal to estimate distance between nodes. By distortion the estimated distance using RSSI is not correct, compensation method is needed. We obtained fuzzy model to calculate more accurate distance between nodes and use encoder which is built in robot to estimate accurate position of robot. Based on proposed position estimation method, tele-operation system was developed. We show by experiment that proposed method is more appropriate for estimation of position and remote navigation of mobile robot through Internet.

  • PDF