• Title/Summary/Keyword: Teflon Resin

Search Result 53, Processing Time 0.023 seconds

Effect of cavity shape, bond quality and volume on dentin bond strength (와동의 형태, 접착층의 성숙도, 및 와동의 부피가 상아질 접착력에 미치는 영향)

  • Lee, Hyo-Jin;Kim, Jong-Soon;Lee, Shin-Jae;Lim, Bum-Soon;Baek, Seung-Ho;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.450-460
    • /
    • 2005
  • The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape , adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality: $Scotchbond^{TM}$ Multi-purpose and Xeno III) and iris hole diameters (volume; 1mm or 3mm in $diameter{\times}1.5mm$ in thickness). Ninety-six molars were randomly divided into 8 groups ($2{\times}2{\times}2$ experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.

Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment

  • Lee, Jung-Jin;Kang, Cheol-Kyun;Oh, Ju-Won;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • PURPOSE. This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS. Sixty specimens were cut in $15{\times}2.75mm$ discs using zirconia. After air blasting of $50{\mu}m$ alumina, samples were prepared by tribochemical silica coating with $Rocatec^{TM}$ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+$Calibra^{(R)}$, (2) Monobond S+$Multilink^{(R)}$ N and (3) ESPN sil+$RelyX^{TM}$ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS. In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION. In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling.

An Effect of Aging and Thermocycling on the Tensile Strength of Restorative Composite Resins (시효와 열순환 처리가 수복용 복합레진의 인장강도에 미치는 영향)

  • Lee, Mi-Jeong;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • The purpose of this study was to evaluate effect of aging and thermocycling on the tensile strength of restorative composite resins. Eight commercially available light-cured restorative composites (Heliomolar: HM, Palfique Estelite: PE, Spectrum: ST, UniFil-F: UF, Z100: ZH, Clearfil AP-X: CA, P60: PS, and Palfique Toughwell: PT) were selected as experimental materials. Rectangular-shaped tensile test specimens were fabricated in a teflon mold giving 5 mm in gauge length and 2 mm in thickness. All samples were stored in distilled water at $37^{\circ}C$ for 100 days. Every 10 days, specimens were thermocycled for 1,000 cycles with 15 seconds of dwelling time in each $5^{\circ}C$ and $55^{\circ}C$ water baths. Tensile testing was carried out at a crosshead speed of 0.5 mm/min and fracture surfaces were observed with a scanning electron microscope. The results obtained were summarized as follows; 1. The strength degradation of thermocycled group was severer than that of the aged group (P<0.01). 2. The tensile strength of the CA and ST groups were significantly higher than that of other groups after thermocycling treatment (P<0.05). 3. Fracture surfaces showed that the composite resin failure developed along the matrix and the filler/resin interface region.

Influence of Thickness on the Degree of Cure of Composite Resin Core Material (코어용 레진의 두께가 중합에 미치는 영향)

  • Kwon, Pyoung-Cheol;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.352-358
    • /
    • 2006
  • The purpose of this study was to investigate the influence of thickness on the degree of cure of dual-cured composite core. 2, 4, 6, 8 mm thickness Luxacore Dual and Luxacore Self (DMG Inc, Hamburg, Germany) core composites were cured by bulk or incremental filling with halogen curing unit or self-cure mode The specimens were stored at $37^{\circ}C$ for 24 hours and the Knoop's hardness of top and bottom surfaces were measured. The statistical analysis was performed using ANOVA and Tukey's test at p = 0.05 significance level. In self cure mode, polymerization is not affected by the thickness. In Luxacore dual, polymerization of the bottom surface was effective in 2, 4 and 6 (incremental) mm specimens. However the 6 (bulk) and 8 (bulk, incremental) mm filling groups showed lower bottom/top hardness ratio (p < 0.05). Within the limitation of this experiment, incremental filling is better than bulk filling in case of over 4 mm depth, and bulk filling should be avoided.

Evaluation of softening ability of Xylene & Endosolv-R on three different epoxy resin based sealers within 1 to 2 minutes - an in vitro study

  • Shenoi, Pratima Ramakrishna;Badole, Gautam Pyarelal;Khode, Rajiv Tarachand
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Objectives: This study evaluated the efficacy of Endosolv-R and Xylene in softening epoxy resin based sealer after 1 to 2 min exposure. Materials and Methods: Sixty Teflon molds ($6mm{\times}1.5mm$ in inner diameter and depth) were equally divided into 3 groups of 20 each. AH 26 (Dentsply/De Trey), AH Plus (Dentsply/De Trey), Adseal (Meta-Biomed) were manipulated and placed in the molds allotted to each group and allowed to set at $37^{\circ}C$ in 100% humidity for 2 wk. Each group was further divided into 2 subgroups according to the solvents used, i.e. Xylene (Lobachemie) and Endosolv-R (Septodont). Specimens in each subgroup were exposed to respective solvents for 1 and 2 min and the corresponding Vicker's microhardness (HV) was assessed. Data was analysed by Mauchly's test and two-way analysis of variance (ANOVA) with repeated measures, and one-way ANOVA. Results: Initial hardness was significantly different among the three sealers with AH Plus having the greatest and Adseal having the least. After 2 min, Xylene softened AH Plus and Adseal sealer to 11% and 25% of their initial microhardness, respectively (p < 0.001), whereas AH 26 was least affected, maintaining 89.4% of its initial microhardness. After 2 min, Endosolv-R softened AH 26, AH Plus and Adseal to 12.7, 5.6 and 8.1% of their initial microhardness, respectively (p < 0.001). Conclusions: Endosolv-R was a significantly more effective short term softener for all the tested sealers after 2 min whereas Xylene was an effective short term softener against AH plus and Adseal but less effective against AH 26.

The Insulation Evaluation of N2:O2 Mixture Gas

  • Lee, Sang-Ho;Choi, Eun-Hyeok;Lim, Dong-Young;Park, Kwang-Seo;Kim, Se-Dong;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.41-46
    • /
    • 2010
  • With the improvement of industrial society, high quality electrical energy, simplification of operation and maintenance, and ensuring reliability are being required. Also we request an urgent change from $SF_6$ gas to an environment-friendly gas insulation material. In this paper, the experiments of breakdown characteristics by pressure and gap change of $N_2/O_2$ mixture gas through a GIS (Gas Insulated Switchgear) model were described. This paper reviews basic data of the surface discharge characteristics for Teflon resin in not only pure $N_2$, $N_2:O_2$ mixture gas as being focused on environmentally-friendly insulating gas, but also $SF_6$. Also, insulation characteristics by breakdown voltage and surface discharge voltage of $N_2:O_2$ mixture gas in the experimental chamber were studied.

Surface Discharge Characteristics in Dry-Air on Laminated Epoxy Solid Dielectrics and Conductive Particle (적층된 에폭시 고체유전체와 도전성 파티클에 대한 Dry-Air의 연면방전특성)

  • Lim, Dong-Young;Jeon, Jong-Cheul;Bae, Sungwoo;Lee, Kwang-Sik;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • This paper presents the surface discharge characteristics in Dry-Air on laminated epoxy solid dielectrics and conductive particles in order to provide the valuable information for the insulation design of eco- friendly gas insulated switchgear. To improve insulation performance, the three types of the laminated epoxy solid dielectrics were proposed, and it was revealed that their surface discharge characteristics were similar to the bakelite dielectrics of same-laminated types. From the surface discharge characteristics of dry air, it was demonstrated that the effect of conductive particles on surface discharge voltage was dominant when there are this particles at the shortest electrode gap and that the degradation of insulation performance on the conductive particles was evident in epoxy than teflon. These phenomena were interpreted in terms of particle-triggered discharge mechanism and electric field of triple junction, respectively.

A study on the Polymer surface treatment of GF-filter bag for collection of fine Particle like carbon black (카본블랙류 미세입자 포집을 위한 유리섬유 필터백의 고분자 표면처리에 관한 연구)

  • Lee, B.;Choi, H.L.;Moon, C.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.55-59
    • /
    • 2008
  • In this paper, we have investigated on collection efficiency of fine particle of glass fiber-filter bag according to the surface treatment. The solution consisted of polytetrafluoroethylene(teflon), graphite powder, silicon resin and water was used as a basic surface treatment agent. Tensile strength of glass filter-bag increased with up to 3hrs and then decreased with surface treatment time. Tensile strength and initial modulus of the glass fiber-filter bag treated by iodine after basic surface treatment for 3hrs were lower than those of basic surface treatment for 3hrs, however collection efficiency and fracture strain were higher than those of basic surface treatment for 3hrs. Glass fiber-filter bag with lower initial modulus and more strain will be extend the durable period and the one treated by iodine after basic surface treatment 3or 3hrs is expected high collection efficiency of fine particle. This method makes it possible to manufacture glass fiber-filter bag of the optimum condition.

  • PDF

Evaluation of Mode I Interlaminar Fracture Toughness for Carbon Fabric/Expocy Composite for Tilting Train Carbody (틸팅열차 차체용 탄소섬유직물/에폭시 복합재의 모우드 I 층간파괴인성 평가)

  • Heo KWang-Su;Kim Jeong-Seok;Yoon Sung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.573-580
    • /
    • 2005
  • Model I interlaminar fracture behaviors of the carbon/epoxy composite, one of the candidate composites for a tilting train carbody, were investigate by the use of DCB(Double cantilever beam) specimens. These specimens were made of CF3327 plain woven fabric with epoxy resin, and an artificial starter delamination was fabricated by inserting Teflon film with the thickness of $12.5{\mu}m$ of $25.0{\mu}m$ at the one end of the specimen. Mode I interlaminar fracture toughness was evaluated for the specimens with the different thickness of an inserter. Also delamination propagating behaviors and interlaminar fracture surface were examined through an ooptical travelling scope and a scanning electron microscope. We found that abruptly unstable crack propagation called as stick-slip phenomena was observed. In addition, interlaminar fracture behaviors were affected on the location and the morphology of a crack tip as well as an interface region.

Fabrication of a Micro-riblet Shark Skin-like Surface using a WEDM Process (와이어 방전가공을 이용한 상어 표피 모사 리블렛 표면 제작)

  • Park, Young Whan;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.201-206
    • /
    • 2016
  • In this study, we attempt to produce a semi-elliptical riblet with a shark skin-like surface using wire electrical discharge machining (WEDM) and micro molding techniques. Our design for the production of the semi-elliptical mold includes an electrode, a winding roller, and a guide on the WEDM system. A replication mold with negative riblets is machined using WEDM, and a shark skin inspired surface with positive riblets is fabricated using a micro molding technique. For a comparison with the original shark skin, a shark skin replica is also produced using the micro molding technique directly from a shark skin template. Droplet contact angles on a flat surface, the shark skin replica, and the epoxy resin-based micro riblet shark skin-like surface are evaluated. The effect of a Teflon coating on the contact angles for the three different surfaces is also investigated. The results show the micro riblet with a shark skin-like surface has a similar contact angle as the shark skin replica, which means that the simplified riblet shark skin surface strongly influences the performance of wettability. This study confirms the effectiveness of using the WEDM method to prepare hydrophobic surfaces with diverse surface patterns.