• 제목/요약/키워드: Technology stability

검색결과 8,522건 처리시간 0.034초

초고속 구동축의 지지 조건에 따른 안정성 분석 (Stability Analysis of High-speed Driveshafts under the Variation of the Support Conditions)

  • 신응수
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.40-46
    • /
    • 2011
  • This paper is to investigate the effects of the asymmetrical support stiffness on the stability of a supercritical driveshaft with asymmetrical shaft stiffness and anisotropic bearings. The equations of motion is derived for a system including a rigid disk, a massless flexible asymmetric shaft, anisotropic bearings and a support beam. The Floquet theory is applied to perform the stability analysis with the variation of the support stiffness, the shaft asymmetry, the shaft damping and the shaft speed. The results show that the asymmetric support stiffness is closely related to the stability caused by primary resonance as well as the supercritical operation. First, the stiffness variation can stabilize the system around primary resonance by weakening the parametric resonance from the shaft asymmetry. Second, it also improve the stability characteristics at a supercritical operation when the support stiffness is not so high relative to the shaft stiffness.

섭동을 가지는 이산 시간지연 시스템의 강인 안정성 (Robust stability for discrete time-delay systems with perturbations)

  • 박주현;원상철
    • 제어로봇시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.158-164
    • /
    • 1996
  • In this paper, we consider the problem of robust stability of discretd time-delay systems subjected to perturbations. Two classes of perturbations are treated. The first one is the nonlinear norm-bounded perturbation, and the second is the structured time-varying parametric perturbation. Based on the discrete-time Lyapunov stability theory, several new sufficient conditions for robust stability of the system are presented. From these conditions, we can estimate the maximum allowable bounds of the perturbations which guarantee the stability. Finally, numerical examples are given to demonstrate the effectiveness of the results.

  • PDF

Effect of Heat Treatment on the Dimensional Stability and the Bending Properties of Radiata Pine Sapwood

  • Yun, Ki-Eon;Kim, Gyu-Hyeok;Kim, Jae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.30-37
    • /
    • 1999
  • The effects of heat treatment on the dimensional stability and bending properties of radiata pine sapwood were investigated. The dimensional stability was almost achieved by heat treatment though the loss of strength was accompanied as a negative effect. The improvement in dimensional stability of wood and the resultant reduction in bending properties were closely related to treatment temperature and duration. The optimum treatment conditions, which could be used to achieve a desired improvement in dimensional stability with resultant losses in modulus of rupture were proposed based on the results obtained in this study.

  • PDF

이동형 수상부유식 가두리의 저항성능과 복원성능 평가 (Resistance and stability evaluation of mobile fish-cage)

  • 김효주;정성재
    • 수산해양기술연구
    • /
    • 제52권2호
    • /
    • pp.79-87
    • /
    • 2016
  • Mobile fish-cage was developed assuming a cage net with an enclosed area, which and estimated the hydrodynamic characteristics of the cage through the model experiment. Flux-shielding plates, installed in the bow were compared with the resistance test carried out by making a hole, bilge keel and stud, and basic block flow rate consisting of the results to a flat surface plate. The experimental results confirmed the improved resistance performance effect of 3~6% in the bilge keel and the stud form. To assess the stability of the fish-cage, evaluation of the stability in accordance with the stability criteria for determining the floating docks had confirmed that it satisfied the static stability performance under operating conditions at sea.

고/액간 계면에 있어서 분산의 안정성에 관한 이론적 고찰 (The Theoretical Investigation on the Stability of Solid/Liquid Dispersion)

  • 김태영;조경행;남기대
    • 한국응용과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.1-11
    • /
    • 1995
  • In this outline, the stability of solid/liquid dispersion was theoretically investigated the matter from all angles by using the modified DLVO theory. The stability was handled various considerations such as a production and characteristics of electrical double layer, total interaction$(V_T)$ that consisting of attractive force$(V_A)$ and repulsion$(V_R)$. coagulation, the stability ratio(W), critical flocculation concentration (cfc) and zeta potential$(\zeta)$ etc. It was possible for us to examine with the stability ratio(W), critical flocculation concentration (cfc) and zeta potential$(\zeta)$ that may estimation of stability of solid/liquid dispersion experimentally.

Dimensional Stability of Bentwoods by Treatment Conditions

  • Jung, In-Suk;Lee, Weon-Hee;Chang, Jun-Pok;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.85-90
    • /
    • 2002
  • This study was carried out to investigate the dimensional stability of bentwoods by three treatments: steaming, urethane varnish coating, and polyethylene glycol (PEG) treatment. Bentwood processing employed a bending-jig with only 4 cm radius of curvature (ROC). The used species were bitter wood (Picrasma quassioides), painted maple (Acer mono), and birch (Betula schmidtiii). The bending properties of these are well-known in bentwood production (Jung et al., 2002). The bentwoods were treated repeated at room temperature [20℃, RH 80% (12 hours) and 40℃ under RH 10% (12 hours)]. To estimate the dimensional stability of bentwoods, we measured the radius of curvature and end-distance. The best results could be attained with PEG treatment. Steaming was the worst treatment. Comparing the properties of the different species, the dimensional stability of bitter wood was excellent. It was concluded that the steaming treatment was unsuitable for dimensional stability of bentwoods.

A stability factor for structure-dependent time integration methods

  • Shuenn-Yih Chang;Chiu-Li Huang
    • Structural Engineering and Mechanics
    • /
    • 제87권4호
    • /
    • pp.363-373
    • /
    • 2023
  • Since the first family of structure-dependent methods can simultaneously integrate unconditional stability and explicit formulation in addition to second order accuracy, it is very computationally efficient for solving inertial problems except for adopting auto time-stepping techniques due to no nonlinear iterations. However, an unusual stability property is first found herein since its unconditional stability interval is drastically different for zero and nonzero damping. In fact, instability might occur for solving a damped stiffness hardening system while an accurate result can be obtained for the corresponding undamped stiffness hardening system. A technique of using a stability factor is applied to overcome this difficulty. It can be applied to magnify an unconditional stability interval. After introducing this stability factor, the formulation of this family of structure-dependent methods is changed accordingly and thus its numerical properties must be re-evaluated. In summary, a large stability factor can result in a large unconditional stability interval but also lead to a large relative period error. As a consequence, a stability factor must be appropriately chosen to have a desired unconditional stability interval in addition to an acceptable period distortion.