• Title/Summary/Keyword: Technology Uncertainty

Search Result 1,662, Processing Time 0.023 seconds

An Evaluation of the Uncertainty of Pressure Measurement Systems (압력 측정 시스템의 불확도 평가)

  • 최주호;홍성수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2002
  • Uncertainty components and evaluation of the system of pressure measurement are presented in this paper. Since early in 1980s, measurement uncertainty is getting more important due to ISO/IEC 17025, which is established for international test and calibration laboratories. Up to now it is true that accuracy, precision, error and etc. have been commonly used in industry to define the amount of error to the products and equipment, but these terms ought to be united into uncertainity in the future. This paper describes how to indicate measurement uncertainty and types of measurement errors, and then shows the evaluation result of measurement system using piezoelectric pressure transducers.

An Experimental Study on the Performance of Cooling Tower Unit for Mechanical Draft (기계통풍식 냉각탑 유닛의 성능에 관한 실험적 연구)

  • JEONG, SOON YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.642-648
    • /
    • 2021
  • In this paper, an experimental study was conducted on the performance of the cooling tower. In order to improve reliability in the cooling tower performance test, the measurement uncertainty of the instrument was estimated. Measurement uncertainty refers to the uncertainty of a measurement, estimates the range in which the expected value of the measurement can be within a certain confidence level, and suggests a range in which the measured representative value is incorrect. Therefore, the measurement result of the performance experiment is not an actual value, but a reasonable estimated value. The measurement uncertainty for the test was calculated and the measured results were presented.

An Experimental Study on the Energy Efficiency Ratio of Heat Pump for Air Source (공기열원 히트펌프의 에너지 효율 비율에 관한 실험적 연구)

  • SOON YOUNG JEONG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.838-844
    • /
    • 2022
  • In this paper, an experimental study was conducted on the energy efficiency ratio of performance for air source heat pump. The energy efficiency ratio presents the operating efficiency of heat pump performance. In order to improve reliability in the energy efficiency ratio test of air source heat pump, the measurement uncertainty of the instrument was estimated. Measurement uncertainty refers to the uncertainty of a measurement, estimates the range in which the expected value of the measurement can be within a certain confidence level, and suggests a range in which the measured representative value is incorrect. The measurement uncertainty for the energy efficiency ratio test of air source heat pump was calculated and the measured results were presented.

Estimation of Uncertainty on Greenhouse Gas Emission in the Agriculture Sector (농업분야 온실가스 배출량 산정의 불확도 추정 및 평가)

  • Bae, Yeon-Joung;Bae, Seung-Jong;Seo, Il-Hwan;Seo, Kyo;Lee, Jeong-Jae;Kim, Gun-Yeob
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 2013
  • Analysis and evaluation of uncertainty is adopting the advanced methodology among the methods for greenhouse gas emission assessment that was defined in GPS2000 (Good practice guideline 2000) and GPG-LULUCF (GPG Land Use, Land-Use Change and Forestry). In 2006 IPCC guideline, two approaches are suggested to explain the uncertainty for each section with a national net emission and a prediction value on uncertainty as follows; 1) Spread sheet calculation based on the error propagation algorithm that was simplified with some assumptions, and 2) Monte carlo simulation that can be utilized in general purposes. There are few researches on the agricultural field including greenhouse gas emission that is generated from livestock and cultivation lands due to lack of information for statistic data, emission coefficient, and complicated emission formula. The main objective of this study is to suggest an evaluation method for the uncertainty of greenhouse gas emission in agricultural field by means of intercomparison of the prediction value on uncertainties which were estimated by spread sheet calculation and monte carlo simulation. A statistic analysis for probability density function for uncertainty of emission rate was carried out by targeting livestock intestinal fermentation, excrements treatment, and direct/indirect emission from agricultural lands and rice cultivation. It was suggested to minimize uncertainty by means of extraction of emission coefficient according to each targeting section.

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF

SAMPLING BASED UNCERTAINTY ANALYSIS OF 10 % HOT LEG BREAK LOCA IN LARGE SCALE TEST FACILITY

  • Sengupta, Samiran;Dubey, S.K.;Rao, R.S.;Gupta, S.K.;Raina, V.K
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.690-703
    • /
    • 2010
  • Sampling based uncertainty analysis was carried out to quantify uncertainty in predictions of best estimate code RELAP5/MOD3.2 for a thermal hydraulic test (10% hot leg break LOCA) performed in the Large Scale Test Facility (LSTF) as a part of an IAEA coordinated research project. The nodalisation of the test facility was qualified for both steady state and transient level by systematically applying the procedures led by uncertainty methodology based on accuracy extrapolation (UMAE); uncertainty analysis was carried out using the Latin hypercube sampling (LHS) method to evaluate uncertainty for ten input parameters. Sixteen output parameters were selected for uncertainty evaluation and uncertainty band between $5^{th}$ and $95^{th}$ percentile of the output parameters were evaluated. It was observed that the uncertainty band for the primary pressure during two phase blowdown is larger than that of the remaining period. Similarly, a larger uncertainty band is observed relating to accumulator injection flow during reflood phase. Importance analysis was also carried out and standard rank regression coefficients were computed to quantify the effect of each individual input parameter on output parameters. It was observed that the break discharge coefficient is the most important uncertain parameter relating to the prediction of all the primary side parameters and that the steam generator (SG) relief pressure setting is the most important parameter in predicting the SG secondary pressure.

Investigation of the Sensitivity Depletion Laws for Rhodium Self-Powered Neutrorn Detectors (SPNDs)

  • Kim, Gil-Gon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.121-131
    • /
    • 2001
  • An investigation of the sensitivity depletion laws for rhodium SPNDs was performed to reduce the uncertainty of the sensitivity depletion laws used in Combustion Engineering (CE) reactors and to develop calculational tools that provide the sensitivity depletion laws to interpret the signal of the newly designed rhodium SPND into the local neutron flux. The calculational tools developed in this work are computer programs for a time-dependent neutron flux distribution in the rhodium emitter during depletion and for a time-dependent beta escape probability that a beta particle generated in the emitter escapes into the collector. These programs provide the sensitivity depletion laws and show the reduction of the uncertainty by about 1 % compared to that of the method employed by CE in interpreting the signal into the local neutron flux. A reduction in the uncertainty by 1 % in interpreting the signal into the local neutron flux reduces the uncertainty tv about 1 % in interpreting the signal into the local power and lengthens the lifetime of the rhodium SPND by about 10% or more.

  • PDF

A Study on the Propagation of Measurement Uncertainties into the Result on a Turbine Performance Test

  • Cho, Soo-Yong;Park, Chanwoo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.689-698
    • /
    • 2004
  • Uncertainties generated from the individual measured variables have an influence on the uncertainty of the experimental result through a data reduction equation. In this study, a performance test of a single stage axial type turbine is conducted, and total-to-total efficiencies are measured at the various off-design points In the low pressure and cold state. Based on an experimental apparatus, a data reduction equation for turbine efficiency is formulated and six measured variables are selected. Codes are written to calculate the efficiency, the uncertainty of the efficiency, and the sensitivity of the efficiency uncertainty by each of the measured quantities. The influence of each measured variable on the experimental result is figured out. Results show that the largest uncertainty magnification factor (UMF) value is obtained by the inlet total pressure among the six measured variables, and its value is always greater than one. The UMF values of the inlet total temperature, the torque, and the RPM are always one. The uncertainty percentage contribution (UPC) of the RPM shows th, lowest influence on the uncertainty of the turbine efficiency, but the UPC of the torque has the largest influence to the result among the measured variables. These results are applied to find the correct direction for meeting an uncertainty requirement of the experimental result in the planning or development Phase of experiment, and also to offer ideas for preparing a measurement system in the planning phase.

Measurement Uncertainty for Analysis of Residual Carbon in a Tungsten-15% Copper MIM part (텅스텐-15% 카파 사출성형체의 잔류 탄소량 분석에 대한 측정 불확도)

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.410-414
    • /
    • 2007
  • Carbon contamination from the binder resin is an inherent problem with the metal powder injection molding process. Residual carbon in the W-Cu compacts has a strong impact on the thermal and electric properties. In this study, uncertainty was quantified to evaluate determination of carbon in a W-15%Cu MIM body by the combustition method. For a valid generalization about this evaluation, uncertainty scheme applied even to the repeatability as well as the uncertainty sources of each analyse step and quality appraisal sources. As a result, the concentration of carbon in the W-Cu part were measured as 0.062% with expanded uncertainty of 0.003% at 95% level. This evaluation example may be useful to uncertainty evaluation for other MIM products.

Impact of Environmental Uncertainty, Trust and Information Technology on User Behavior of Accounting Information Systems

  • DWIRANDRA, A.A.N.B.;ASTIKA, Ida Bagus Putra
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.1215-1224
    • /
    • 2020
  • Micro, Small and Medium Enterprises in Denpasar City still face low mastery of technology and financial management, one of which is the application of technology-based accounting information systems (e-commerce) for small and medium enterprises. The research objective was to determine the relationship between environmental uncertainty, trust and ease of information technology moderating behavior in accounting information systems. Research with a quantitative approach, the method used is multiple linear regression with moderated regression analysis. The study population was 816 small and medium enterprises. The sampling method technique was the incidental sampling approach and the Slovin formula so that a sampling of 100 small and medium enterprises that had used e-commerce was determined in the city of Denpasar. The results of research that have been conducted determine the relationship between user behavior in accounting information systems that affect individual performance, the relationship between environmental uncertainty affects accounting information systems mediated by individual performance, while the ease of information technology and its ability to be mediated by individual performance has an effect on the behavior of using accounting information systems. The application of accounting information systems in small and medium enterprises is expected to improve individual performance so as to increase income.