• Title/Summary/Keyword: Technology Learning

Search Result 8,116, Processing Time 0.042 seconds

A study of 3D CAD and DLP 3D printing educational course (3D CAD와 DLP 3D 프린팅 교육과정에 관한 연구)

  • Young Hoon Kim;Jeongwon Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Currently, almost all product development in the jewelry industry utilizes 3D CAD and 3D printing. In this situation, 3D CAD modeling and 3D printing ability units in colleges, Tomorrow Learning Card Education, and Course Evaluation-type jewelry design related education are conducted with developed curriculum based on the standards for training standards, training hours, training equipment, and practice materials presented by NCS. Accordingly, this study analyzes 3D CAD modeling and 3D printing training facilities, training hours, training equipment, etc into three categories of NCS precious metal processing and jewelry design, and studies the development of educational systems such as 3D CAD/3D printing curriculum and various environments that meet these standards. Education using this 3D CAD/3D printing education system will enable us to continuously supply professional talent with practical skills not only in the jewelry industry but also in the entire 3D CAD/3D printing manufacturing industry, which is called as one of the pillars of the 4th Industry. The quality of employment of trainees receiving education and the long-term retention rate after employed can also have a positive effect. In addition, excellent educational performance will help improve the recruitment rate of new students in jewelry jobs or manufacturing-related departments, which are difficult to recruit new students in recent years.

A Survey of Student Satisfaction after Role Play using Syndrome Differentiation-based Clinical Performance Examination Scenario in Class of Korean Medical Classics (원전 수업에서 변증(辨證) 기반 진료수행시험(CPX) 시나리오를 이용한 역할극에 대한 학생 만족도 조사)

  • Hak-Jun, Jo;Na-young, Jo;Jeong-Su, Park
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.73-86
    • /
    • 2022
  • Objectives : The purpose of this study was to investigate the satisfaction of students who participated in a role play using the syndrome differentiation CPX (Clinical Performance Examination) scenario in Korean Medicine Classics class, and to find out whether the results were correlated with self-assessment of treatment skills and subject achievement. Methods : In the Korean Medicine Classics class in the first semester of 2022, 44 first-year students in the Department of Korean Medicine completed theoretical education and formative evaluation on the subject of internal damage fever, and then role-played using CPX scenarios. Among them, 41 students consented to the study. Students who agreed to the study answered the satisfaction questionnaire consisting of 13 questions in 2 areas on learning methods and effects, and self-evaluation was conducted according to the evaluation items of medical technology consisting of 23 questions. Satisfaction and self-assessment results were analyzed for correlation, and additionally, correlation with Korean Medicine Classics subject achievement was also analyzed. Results : The result of student satisfaction with the role play was 4.87±0.06 while the result of student self-assessment of clinical skill was 4.73±0.16. The student satisfaction with the role play showed statisticallysignificant correlations with the self-assessment of clinical skill and quiz score of Korean Medical Classics while it did not show correlations with the total score of Korean Medical Classics and paper test. Also, the self-assessment of clinical skill did not show correlations with the total score of Korean Medical Classics, paper test, and quiz. Conclusions : Even though the students who performed the role play using the syndrome differentiation based CPX scenario highly assessed their clinical skill and showed high satisfaction, it did not show significant correlation with the achievement of Korean Medical Classics.

Fake News Detection on YouTube Using Related Video Information (관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법)

  • Junho Kim;Yongjun Shin;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.19-36
    • /
    • 2023
  • As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

A Methodology for Making Military Surveillance System to be Intelligent Applied by AI Model (AI모델을 적용한 군 경계체계 지능화 방안)

  • Changhee Han;Halim Ku;Pokki Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2023
  • The ROK military faces a significant challenge in its vigilance mission due to demographic problems, particularly the current aging population and population cliff. This study demonstrates the crucial role of the 4th industrial revolution and its core artificial intelligence algorithm in maximizing work efficiency within the Command&Control room by mechanizing simple tasks. To achieve a fully developed military surveillance system, we have chosen multi-object tracking (MOT) technology as an essential artificial intelligence component, aligning with our goal of an intelligent and automated surveillance system. Additionally, we have prioritized data visualization and user interface to ensure system accessibility and efficiency. These complementary elements come together to form a cohesive software application. The CCTV video data for this study was collected from the CCTV cameras installed at the 1st and 2nd main gates of the 00 unit, with the cooperation by Command&Control room. Experimental results indicate that an intelligent and automated surveillance system enables the delivery of more information to the operators in the room. However, it is important to acknowledge the limitations of the developed software system in this study. By highlighting these limitations, we can present the future direction for the development of military surveillance systems.

Developing an Occupants Count Methodology in Buildings Using Virtual Lines of Interest in a Multi-Camera Network (다중 카메라 네트워크 가상의 관심선(Line of Interest)을 활용한 건물 내 재실자 인원 계수 방법론 개발)

  • Chun, Hwikyung;Park, Chanhyuk;Chi, Seokho;Roh, Myungil;Susilawati, Connie
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.667-674
    • /
    • 2023
  • In the event of a disaster occurring within a building, the prompt and efficient evacuation and rescue of occupants within the building becomes the foremost priority to minimize casualties. For the purpose of such rescue operations, it is essential to ascertain the distribution of individuals within the building. Nevertheless, there is a primary dependence on accounts provided by pertinent individuals like building proprietors or security staff, alongside fundamental data encompassing floor dimensions and maximum capacity. Consequently, accurate determination of the number of occupants within the building holds paramount significance in reducing uncertainties at the site and facilitating effective rescue activities during the golden hour. This research introduces a methodology employing computer vision algorithms to count the number of occupants within distinct building locations based on images captured by installed multiple CCTV cameras. The counting methodology consists of three stages: (1) establishing virtual Lines of Interest (LOI) for each camera to construct a multi-camera network environment, (2) detecting and tracking people within the monitoring area using deep learning, and (3) aggregating counts across the multi-camera network. The proposed methodology was validated through experiments conducted in a five-story building with the average accurary of 89.9% and the average MAE of 0.178 and RMSE of 0.339, and the advantages of using multiple cameras for occupant counting were explained. This paper showed the potential of the proposed methodology for more effective and timely disaster management through common surveillance systems by providing prompt occupancy information.

Development and Application of a Maker Education Program Using Virtual Reality Technology in Elementary Science Class: Focusing on the Unit of 'Animal Life' (초등 과학 수업에서 VR 기술을 활용한 메이커교육 프로그램의 개발과 적용 - '동물의 생활' 단원을 중심으로 -)

  • Kim, Hye-Ran;Choi, Sun-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.3
    • /
    • pp.399-408
    • /
    • 2023
  • This study developed and applied a maker education program for an elementary school's science unit on 'Animal Life'. It examined the program's impact on students' academic achievement and creative problem-solving ability. The theme of the maker education program was 'creating a robot virtual reality (VR) exhibition hall mimicking animal characteristics'. It explored scientific concepts and creatively created a robot VR exhibition hall in accordance with the TMI maker education model. Findings revealed that the program significantly improved students' academic achievement and creative problem-solving ability (p<.05). This study provides evidence for the effectiveness of maker education in elementary school science classes and suggests that using maker education can increase students' interest in and engagement with science learning. To implement maker education more actively in elementary school science classes, stakeholders should develop various topics and programs. Additional research investigating the effectiveness of maker education in different age groups and various other areas of elementary science education is required to generalize the results of this study. Moreover, educational and teacher capacity building is required for educators to utilize maker education effectively.

A Study on the Development and Validation of Digital Literacy Measurement for Middle School Students

  • Hee Chul Kim;Ji Young Lim;Iljun Park;Myoeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.177-188
    • /
    • 2023
  • The purpose of this study is to develop and validate a scale for measuring digital literacy by identifying the factors consisting of digital literacy and extracting items for each factor. Preliminary items for the Delphi study were developed through the analysis of previous literature and the deliberation of the research team. As a result of two rounds of the expert Delphi study, 65 items were selected for the main survey. The validation of the items was carried out in the process of exploratory and confirmatory factor analyses, reliability test, and criterion validity test using the data collected in the main survey. As a result, a 4-factor structure composed of 31 questions(factor 1: digital technology & data literacy- 9 questions, factor 2: digital content & media literacy- 8 questions, factor 3: digital communication & community literacy- 9 questions, factor 4: digital wellness literacy - 5 questions) was confirmed. Also, the goodness of fit indices of the model were found to be good and the result of reliability test revealed the scale had a very appropriate level of Cronbach's alpha(α=.956). In addition, a statistically significantly positive correlations(p<.001) were found between digital literacy and internet self-efficacy and between digital literacy and self-directed learning ability, which were predicted in the existing evidence, therefore the criterion validity of the developed scale was secured. Finally, practical and academic implications of the study are provided and future study and limitations of the study are discussed.

Systemic literature review on the impact of government financial support on innovation in private firms (정부의 기술혁신 재정지원 정책효과에 대한 체계적 문헌연구)

  • Ahn, Joon Mo
    • Journal of Technology Innovation
    • /
    • v.30 no.1
    • /
    • pp.57-104
    • /
    • 2022
  • The government has supported the innovation of private firms by intervening the market for various purposes, such as preventing market failure, alleviating information asymmetry, and allocating resources efficiently. Although the government's R&D budget increased rapidly in the 2000s, it is not clear whether the government intervention has made desirable impact on the market. To address this, the current study attempts to explore this issue by doing a systematic literature review on foreign and domestic papers in an integrated way. In total, 168 studies are analyzed using contents analysis approach and various lens, such as policy additionality, policy tools, firm size, unit of analysis, data and method, are adopted for analysis. Overlapping policy target, time lag between government intervention and policy effects, non-linearity of financial supports, interference between different polices, and out-dated R&D tax incentive system are reported as factors hampering the effect of the government intervention. Many policy prescriptions, such as program evaluation indices reflecting behavioral additionality, an introduction of policy mix and evidence-based policy using machine learning, are suggested to improve these hurdles.

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.