International journal of advanced smart convergence
/
제12권3호
/
pp.51-60
/
2023
This study focuses on the design of a GPT-based system for relatively rapid technology credit assessment of SMEs. This system addresses the limitations of traditional time-consuming evaluation methods and proposes a GPT-based model to comprehensively evaluate the technological capabilities of SMEs. This model fine-tunes the GPT model to perform fast technical credit assessment on SME-specific text data. Also, It presents a system that automates technical credit evaluation of SMEs using GPT and LLM-based chatbot technology. This system relatively shortens the time required for technology credit evaluation of small and medium-sized enterprises compared to existing methods. This model quickly assesses the reliability of the technology in terms of usability of the base model.
Purpose: Support vector machines (SVMs) ensemble has been proposed to improve classification performance of Credit risk recently. However, currently used fusion strategies do not evaluate the importance degree of the output of individual component SVM classifier when combining the component predictions to the final decision. To deal with this problem, this paper designs a support vector machines (SVMs) ensemble method based on fuzzy integral, which aggregates the outputs of separate component SVMs with importance of each component SVM. Research design, data, and methodology: This paper designs a personal credit risk evaluation index system including 16 indicators and discusses a support vector machines (SVMs) ensemble method based on fuzzy integral for designing a credit risk assessment system to discriminate good creditors from bad ones. This paper randomly selects 1500 sample data of personal loan customers of a commercial bank in China 2015-2020 for simulation experiments. Results: By comparing the experimental result SVMs ensemble with the single SVM, the neural network ensemble, the proposed method outperforms the single SVM, and neural network ensemble in terms of classification accuracy. Conclusions: The results show that the method proposed in this paper has higher classification accuracy than other classification methods, which confirms the feasibility and effectiveness of this method.
Journal of Information Technology Applications and Management
/
제14권2호
/
pp.151-168
/
2007
The corporate credit rating represents an assessment of the relative level of risk associated with the timely payments required by the debt obligation. In this study, the corporate credit rating model employs artificial intelligence methods including Neural Network (NN) and Case-Based Reasoning (CBR). At first we suggest three classification models, as partitioned neural networks, all of which convert multi-group classification problems into two group classification ones: Ordinal Pairwise Partitioning (OPP) model, binary classification model and simple classification model. The experimental results show that the partitioned NN outperformed the conventional NN. In addition, we put to use CBR that is widely used recently as a problem-solving and learning tool both in academic and business areas. With an advantage of the easiness in model design compared to a NN model, the CBR model proves itself to have good classification capability through the highest hit ratio in the corporate credit rating.
The Journal of Asian Finance, Economics and Business
/
제8권1호
/
pp.873-880
/
2021
The purpose of this study is to investigate the impact of internal control on credit risk of joint stock commercial banks in Vietnam from 2007 to 2018. Furthermore, we specify bank-specific characteristics and macroeconomic conditions, and analyze how these factors affect credit risk of banks: the number of board members, the number of board members with banking or finance background as ratio of total board members, loans to total assets ratio, loans to deposit ratio, the number of days between the year-end and the publication of the financial statements, and the use of top four auditing firms proxy for five elements of internal control. By using the dataset of 30 Vietnamese joint stock commercial banks and Bayesian linear regression via Random-walk Metropolis Hastings algorithm, the results of this study show that five elements of internal control have a impact on bank credit risk, namely, control environment, risk assessment, control activities, information and communication, and monitoring activities. For factors of banks' characteristics, bank size and financial leverage have a negative impact on banks' credit risk, and bank age has a positive effect. For macroeconomic factors, inflation has a positive impact and economic growth has a negative impact on banks' credit risk.
This study proposes a new method of analyzing the burnup credit in boiling water reactor spent fuel assemblies against various operating parameters. The operating parameters under investigation include fuel temperature, axial burnup profile, axial moderator density profile, and control blade usage. In particular, the effects of variations in one and two operating parameters on the curve of effective multiplication factor ($k_{eff}$) versus burnup (B) are, respectively, the so-called single and compound effects. All the calculations were performed using SCALE 6.1 together with the Evaluated Nuclear Data Files, part B (ENDF/B)-VII238-neutron energy group data library. Furthermore, two geometrical models were established based on the General Electric (GE)14 $10{\times}10$ boiling water reactor fuel assembly and the Generic Burnup-Credit (GBC)-68 storage cask. The results revealed that the curves of $k_{eff}$ versus B, due to single and compound effects, can be approximated using a first degree polynomial of B. However, the reactivity deviation (or changes of $k_{eff}$, ${\Delta}k$) in some compound effects was not a summation of the all ${\Delta}k$ resulting from the two associated single effects. This phenomenon is undesirable because it may to some extent affect the precise assessment of burnup credit. In this study, a general formula was thus proposed to express the curves of $k_{eff}$ versus B for both single and compound effects.
The Journal of Asian Finance, Economics and Business
/
제5권4호
/
pp.9-20
/
2018
Global rating agencies, such as Moody's and S&P, have assigned credit ratings to corporate bonds issued by Japanese firms since 1980s. Local Japanese rating agencies, such as R&I and JCR, have more market share than the global raters. We examine the yield spreads of 1,050 yen-denominated corporate bonds issued by financial firms in Japan from 1998 to 2014 and find no evidence that bonds rated by at least one global agency are associated with a significant reduction in the cost of debt as compared to those rated by only local rating agencies. Unlike non-financial firms, the reputation effect of global rating agencies does not exist for Japanese financial firms. We also observe that firms with less information asymmetry are more likely to acquire ratings from Moody's or S&P. Additionally, the firm's financial profile does not affect its choice to seek out ratings from global raters. Our findings are contradictory to those by Han, Pagano, and Shin (2012), who employ bonds issued by non-financial firms in Japan. Our conjecture is that the asymmetric nature of financial firms makes investors less likely to depend on a credit risk assessment by rating agencies in determining the yields of new bonds.
프로젝트 파이낸싱(Project Financing, 이하PF)은 자금조달을 위한 금융기법 중 하나로 사업주의 신용도나 다른 담보 대신 프로젝트의 수익성에 기초하여 투자자로부터 자금을 제공 받는다. 하지만 국내에서 이루어지는 PF의 경우, 자금 조달의 주체인 금융기관은 사업 타당성 검증체계가 부족하여 프로젝트의 사업성을 평가하기보다 건설사에게 신용보강을 요구하며, 이에 따라 사업주의 대출채권에 건설사가 연대보증 또는 채무인수약정을 하고 있는 실정이다. 이로 인해 건설사는 PF 우발채무라는 간접적인 채무가 발생하게 되고, 이는 재무제표에 포함되지 않으나 2009년 PF 우발채무 기재의 공시기준 제정됨에 따라 주요 관리 항목이라 할 수 있다. 본 연구는 PF 우발채무가 기업의 재무상태에 미치는 영향을 분석하기 위하여 신용등급 및 도급순위 별로 건설사를 분류하여 PF 우발채무가 기업의 주요 재무비율인 유동성, 안정성, 수익성에 미치는 영향을 분석하였다.
본 논문의 목적은 고교학점제 연구학교 운영사례를 통해 가정과 교육공동체에서 고교학점제를 준비하기 위한 방안을 탐색하는데 있다. 이를 위해 2019년 고교학점제 연구학교를 운영한 강원도 지역 H 고등학교의 운영 과정을 5개월간 모니터링 하고, 학생, 학부모, 교사를 대상으로 설문조사와 면담을 실시하여 교육과정 운영 내용을 파악하였다. H 고등학교의 고교학점제 운영사례를 바탕으로 가정과 교육공동체의 준비 방안을 제안하면 다음과 같다. 가정과 교사들은 학생들에게 매력적이고 의미 있는 가정 수업을 제공할 수 있도록 수업과 평가를 개선하고, 온라인 공동교육과정을 포함하여 가정교과 영역의 다양한 선택과목을 개설하는데 적극적인 노력을 기울여야 한다. 가정과 교사 공동체 및 관련 학회는 지역의 가정교과 연구회를 하나로 연결하는 공고한 네트워크를 구축하여 교육과정 운영과 관련된 정보를 공유하고 수업 연구 결과를 확산하는 채널로 삼을 필요가 있다. 가정교과 교원양성기관은 변화하는 교원양성정책에 발맞추어 예비교사가 현장에서 다교과를 지도할 수 있는 역량을 기르도록 교육과정을 혁신하고, 현장교사 재교육을 위한 질 높은 온/오프라인 프로그램을 개발하여 제공해야 한다.
본 연구는 금융기관의 여신심사용 기술력 평가모형의 직접 활용 타당성 및 가능성을 검증하기 위해 첫째, 기술력 평가모형이 기업의 경영성과를 반영하고 있는지, 둘째, 현재의 기술등급 분류체계가 적절한지, 셋째, 그렇다면 기술등급 분류체계를 결정하는 중요 평가항목은 무엇인지를 검증하였다. 분석결과 재무적 성과(안정성), 비재무적 성과(기술환경)는 기술등급을 설명하는데 유의한 변수임이 증명되었다. 기술등급 분류체계는 군집 간 모든 평가항목(대항목 2개, 중학목 8개)에서 유의한 차이가 나타났으며, 평가항목의 상대적 중요도는 큰 차이를 보이지는 않았지만 기술금융 적합여부와 기술력 우수여부를 결정하는 1순위 변수로는 기술개발능력이 선정되었다. 기술금융 적합여부에 있어 2순위 변수로는 기업 경영관련 지표가, 기술력 우수기업 여부는 기술력 기반의 경쟁력 지표가 선정되었다. 종합하면 기술력 평가모형은 기업의 경영성과와 위험을 일정부분 반영한 모형이며, 기본적으로 기술개발능력을 중심으로 경영능력과 기술진보에 의한 경쟁력을 더하여 기술기반 중소기업의 미래를 예측하는 모형임을 의미한다. 이는 '미래진보성(forward-looking)' 기능의 기술력 평가모형이 기존의 신용평가모형과 결합했을 때 평가모형으로서 예측력과 안정성 개선에 긍정적 요인으로 작용할 수 있는 가능성이 있음을 시사한다.
본 연구는 P2P 대부 플랫폼에서 우수 대출자를 예측시 유용한 합성 소수집단 오버샘플링 기법을 제안하고 그 성과를 실증적으로 검증하고자 한다. P2P 대부 관련 우수 대출자를 추정할 때 일어나는 문제점중의 하나는 클래스 간 불균형이 심하여 이를 해결하지 않고서는 우수 대출자 예측이 쉽지 않다는 점이다. 이러한 문제를 해결하기 위하여 본 연구에서는 SMOTE, 즉 합성 소수집단 오버샘플링 기법을 제안하고 LendingClub 데이터셋에 적용하여 성과를 검증하였다. 검증결과 SMOTE 방법은 서포트 벡터머신, k-최근접이웃, 로지스틱 회귀, 랜덤 포레스트, 그리고 딥 뉴럴네트워크 분류기와 비교하여 통계적으로 우수한 성과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.