• 제목/요약/키워드: Techno-Stress

검색결과 2,877건 처리시간 0.027초

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

Design of a Stress Measurement System for State Recognition of Game Addicts

  • Park, Myeong-Chul;Jung, Hyon-Chel;Kim, Tae-Sun
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.87-93
    • /
    • 2017
  • In this paper, we design a small low power single channel ECG(Electrocardiogram) system of Chest Belt type with fiber-type electrodes to measure emotional state change of game addict. HRV(Heart Rate Variability) is analyzed through heart rate signal measurement and the psychological stress state is judged by using it. And it verifies its effectiveness through prototype. First, we design HR measurement module through low power MCU(Micro Controller Unit) and implement prototype level measurement system. The results showed that the difference between the addiction group and the general group was confirmed and that the system was effective. The result of this study can be used for health management such as reduction of stress of the user through music and breathing that lowers the stress by detecting the stress state of the general person or the chronic ill person.

Stress and strain analysis of functionally graded plates with circular cutout

  • Dhiraj, Vikash Singh;Jadvani, Nandit;Kalita, Kanak
    • Advances in materials Research
    • /
    • 제5권2호
    • /
    • pp.81-92
    • /
    • 2016
  • Stress concentration is an interesting and essential field of study, as it is the prime cause of failure of structural parts under static load. In the current paper, stress and strain concentration factors in unidirectional functionally graded (UDFGM) plate with central circular cutout are predicted by carrying out a finite element study on ANSYS APDL platform. The present study aims to bridge the lacuna in the understandings of stress analysis in perforated functionally graded plates. It is found that the material variation parameter is an important criterion while designing a perforated UDFGM plate. By selecting a proper material variation parameter and direction of material gradation, the stress and strain concentrations can be significantly reduced.

Effect of two temperature and energy dissipation in an axisymmetric modified couple stress isotropic thermoelastic solid

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • 제11권3호
    • /
    • pp.199-215
    • /
    • 2022
  • The present paper deals with the axisymmetric deformation in homogeneousisotropic thermoelastic solid with two temperatures, with and without energy dissipation using modified couple stresstheory. The effect of energy dissipation and two temperature isstudied due to the concentrated normalforce, normalforce overthe circularregion, thermal pointsource and thermalsource over the circular region. The Laplace and Hankel transform techniques have been used to find the solution to the problem. The displacement components, conductive temperature distribution, stress components and couple stress are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. Effects of two temperature and energy dissipation on the conductive temperature,stress components and couple stress are depicted graphically.

Thomson Effect in Magneto-Thermoelastic Material with Hyperbolic two temperature and Modified Couple Stress Theory

  • Iqbal, Kaur;Kulvinder, Singh
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.851-863
    • /
    • 2022
  • This research deals with the study of the Thomson heating effect in magneto-thermoelastic homogeneous isotropic rotating medium, influenced by linearly distributed load and as a result of modified couple stress theory. The charge density is taken as a function of the time of the induced electric current. The heat conduction equation with energy dissipation and with hyperbolic two-temperature (H2T) is used to formulate the model of the problem. Laplace and Fourier transforms are used to solve this mathematical model. Various components of displacement, temperature change, and axial stress as well as couple stress are obtained from the transformed domain. To get the solution in physical domain, numerical inversion techniques have been employed. The Thomson effect with GN (Green-Nagdhi) -III theory and Modified Couple Stress Theory (MCST) is shown graphically on the physical quantities.

A unified consistent couple stress beam theory for functionally graded microscale beams

  • Chih-Ping Wu;Zhen Huang
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.103-116
    • /
    • 2024
  • Based on the consistent couple stress theory (CCST), we develop a unified formulation for analyzing the static bending and free vibration behaviors of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories, as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories, can be obtained by assigning some specific shape functions of the shear deformations varying through the thickness direction of the FGMBs in the unified formulation. The above theories are thus included as special cases of the unified CCST. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. The impacts of some essential factors on the deformation, stress, and natural frequency parameters of the FGMBs are examined, including the material length-scale parameter, the aspect ratio, and the material-property gradient index.

Experimental study on seepage characteristics of large size rock specimens under three-dimensional stress

  • Sun, Wenbin;Xue, Yanchao;Yin, Liming;Zhang, Junming
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.567-574
    • /
    • 2019
  • In order to study the effect of stress and water pressure on the permeability of fractured rock mass under three-dimensional stress conditions, a single fracture triaxial stress-seepage coupling model was established; By using the stress-seepage coupling true triaxial test system, large-scale rock specimens were taken as the research object to carry out the coupling test of stress and seepage, the fitting formula of permeability coefficient was obtained. The influence of three-dimensional stress and water pressure on the permeability coefficient of fractured rock mass was discussed. The results show that the three-dimensional stress and water pressure have a significant effect on the fracture permeability coefficient, showing a negative exponential relationship. Under certain water pressure conditions, the permeability coefficient decreases with the increase of the three-dimensional stress, and the normal principal stress plays a dominant role in the permeability. Under certain stress conditions, the permeability coefficient increases when the water pressure increases. Further analysis shows that when the gob floor rock mass is changed from high stress to unloading state, the seepage characteristics of the cracked channels will be evidently strengthened.

페이스북 이용자의 Techno-stress와 Coping에 관한 연구 (A Study on Techno-stress and Coping of Facebook' Users)

  • 이새봄;문재영;곽준식
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2014년도 추계 종합학술대회 논문집
    • /
    • pp.441-442
    • /
    • 2014
  • 최근 Social Network Service를 통해 사회적 네트워크를 구축하는 등의 많은 혜택으로 인해 SNS 이용자 수가 증가하였지만, 개인 정보유출, 게시물의 과부하 등과 같은 역기능으로 SNS 이용에 피로감을 느끼고 있는 실정이다. 따라서 본 연구에서는 페이스북 이용자들을 대상으로 SNS에 따른 테크노스트레스 유발요인과 테크노스트레스에 따른 대응방식(Coping)에 대해 연구하고자 한다.

  • PDF

Stress wave propagation in clearance joints based on characteristics method

  • Tang, Ya-Qiong;Li, Tuan-Jie;Chen, Cong-Cong;Wang, Zuo-Wei
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.781-788
    • /
    • 2017
  • In this paper, a stress wave model is established to describe the three states (separate, contact and impact) of clearance joints. Based on this stress wave model, the propagation characteristics of stress wave generated in clearance joints is revealed. First, the stress wave model of clearance joints is established based on the viscoelastic theory. Then, the reflection and transmission characteristics of stress wave with different boundaries are studied, and the propagation of stress wave in viscoelastic rods is described by the characteristics method. Finally, the stress wave propagation in clearance joints with three states is analyzed to validate the proposed model and method. The results show the clearance sizes, initial axial speeds and material parameters have important influences on the stress wave propagation, and the new stress waves will generate when the clearance joint in contact and impact states, and there exist some high stress region near contact area of clearance joints when the incident waves are superposed with reflection waves, which may speed up the damage of joints.

An evaluation system for determining the stress redistribution of a steel cable-stayed bridge due to cable stress relaxation at various temperatures

  • Tien-Thang Hong;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.805-821
    • /
    • 2023
  • This study developed an evaluation system to explore the effect of the environmental temperature on the stress redistribution produced by cable stress relaxation of structural members in a steel cable-stayed bridge. The generalized Maxwell model is used to estimate stress relaxation at different temperatures. The environmental temperature is represented using the thermal coefficients and temperature loads. The fmincon optimization function is used to determine the set of stress relaxation parameters at different temperatures for all cables. The ABAQUS software is employed to investigate the stress redistribution of the steel cable-stayed bridge caused by the cable stress relaxation and the environmental temperature. All of these steps are set up as an evaluation system to save time and ensure the accuracy of the study results. The developed evaluation system is then employed to investigate the effect of environmental temperature and cable type on stress redistribution. These studies' findings show that as environmental temperatures increased up to 40 ℃, the redistribution rate increased by up to 34.9% in some girders. The results also show that the cable type with low relaxation rates should be used in high environmental temperature areas to minimize the effect of cable stress relaxation.