• Title/Summary/Keyword: Technical precision

Search Result 410, Processing Time 0.027 seconds

Analysis on the heat-resisting method of the electrolytic metal reduction reactor in the test facility for the spent fuel waste (사용후핵연료 시험시설에서 전기 금속 전환반응기의 내열 방안 분석)

  • 김영환;윤지섭;정재후;홍동희;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.776-779
    • /
    • 2003
  • To reduce the storage space of spent fuel used at the atomic power plants in the over the world, the uranium elements contained in the spent fuel is being extracted and effectively stored. For this, the spent fuel are oxidized and deoxidized. In this study, it is produced the heat-resisting methods about the spent fuel management technology research and test facility for the spent fuel waste for spent fuel minimized. The first considered processes in the facility are the electrolytic metal reduction reactor process. Since the electrolytic metal reduction reactor is operated at the high temperature range, we have to consider the heat-resisting methods for the devices. For the heat-resisting methods, we have searched and analyzed technical reference for the heat-resisting methods. We have calculated thermal stress and strain of each devices by the commercial analysis software, ANSYS. D.S. It is experimented for inspecting confidence rate of analysis results. By using the results, we have analyzed the problems of parts and determined the heat-resisting material, commercial parts, and the size of parts and O-ring. Based on these results, it is produced the heat-resisting methods of magnesia filter, cathode, and reactor for the electrolytic metal reduction reactor.

  • PDF

Development of Wearable Robot for Elbow Motion Assistance of Elderly (노약자의 팔꿈치 거동 지원을 위한 착용형 로봇 개발)

  • Jang, Hye-Yoen;Han, Chang-Soo;Kim, Tae-Sik;Jang, Jae-Ho;Han, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • The purpose of this study is to develop the algorithm which can control muscle power assist robot especially for elderly. Recently, wearable robots for power assistance are developed by many researchers, and its application fields are also variable such as for medical or military equipment. However, there are many technical barriers to develop the wearable robot. This study suggest a control method improving performance of a wearable robot system by using a EMG signal of major muscles and a force sensor signal as command signal of system. The result of the robot Prototype efficiency experiment, the case of Maximum Isometric motion it suggest 100% power of muscle, the man need only 66% of MVIC(Maximum Voluntary Isometric Contraction) to lift 5kg dumbbell without robot assist. However the man needs only 52% of MVIC to lift 5kg dumbbell with robot assist. Therefore 20% muscle power increased with robot assist. Also, we designed light weight robot mechanism that extract the command signal verified and drive the wanted motions.

Wireless Temperature Monitoring of Driving Gear Unit in High Speed Train Using IC Sensor (IC 센서를 이용한 고속철도차량 구동장치의 무선 온도 모니터링 시스템)

  • Kwon, Seok Jin;Seo, Jung-Won;Lee, Dong-Hyong;Hwang, Ji Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.673-678
    • /
    • 2013
  • Driving gear units can be affected by various problems, including those associated with external or internal defects in the bearing, problems with the lubricant oil, high-loading of the railway, and frequent impacts generated by rail joints. Temperature monitoring is a basic method in diagnosing abnormal conditions in the reduction gear and other components. This paper describes a new wireless monitoring system for the temperature diagnosis of abnormal conditions of the reduction gear. Integrated circuit (IC)-type temperature sensors were installed in the reduction gear box of a high-speed railway car. The temperature data from the reduction gear were acquired and analyzed in situ during high-speed rail operation. Analysis of these data was used to alert the driver and/or maintenance personnel when problems occurred.

Optimization of the Deflection for large Disk type Gear of Auto Phoropter (자동굴절검사기용 대형 원판형 기어의 변형 최적화)

  • Jung, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.370-376
    • /
    • 2011
  • Recently, the application range of plastic gears is widely expanding by the development of engineering plastics with good mechanical properties. Plastic gears have excellent performances such as light weight, water resistance and vibration absorbing ability for metallic gears. In this study, the optimization of injection molding process was done for the large disk type plastic gears of auto phoropter. Design Of Experiment (Taguchi method) was adopted to find a tendency of molding conditions that influence the flatness of disk type gear. Four main factors for molding conditions were selected based on injection temperature, filling time, packing pressure and mold temperature. Also, Filling, packing and cooling analyses were carried out to evaluate Z directional deflection of large disk type gear by using the simulation software (Moldflow) based on the DOE. From the results, it was found that the injection temperature and packing pressure are the most sensitive parameters for the Z directional deflection of large disk type gears.

Measurement of Fracture Toughness of WC-Co Composites by Micro-Vickers Indentation Cracks (미소 비커스 압입균열에 의한 초경합금의 파괴 인성치 측정)

  • Lee, O.S.;Son, I.S.;Park, W.K.;Hwang, S.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.5-13
    • /
    • 1995
  • Various techniques to measure fracture toughness which is an important parameter to predict fracture behavious of structural materials have been reported. Among these mathods, this paper describes the micro-Vickers indentation crack method to estimate the fracture toughness of some WC-Co composites. Two indentation crack patterns (such as radial-median cracks (orhalf-penny cracks) and Palmqvist cracks generated during indentation) are referred precisely. The fracture toughness of WC-4.7wt%Co, WC-6wr%Co and WE-9wr%Co composites were estimated by using some equations given by Shetty et al., Nihara et al. in this study. We show the reliability of indentation method by comparing the results with those from literatures. The appropriate equation to estimate the fracture toughness in the case of WC-Co composite is given. In addition, some technical informations in terms of the crack length by indentation in estimating the existence of the surface residual stress that prevents to obtain an accurate fracture toughness are presented.

  • PDF

Computer-Aided Process Planning System of Cold Forging and its Verification by F.E. Simulation (냉간단조 공정설계 시스템과 유한요소해석에 의한 검증)

  • Lee, E.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • This paper describes interactive computer procedures for design the forming sequences in cold forging. This system is implemented on the personal computer and its environment is a commercial AutoCAD system. The programming language. AutoLISP, was used for the configuration of the system. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the part is a key in process planning. To recognize the part section geometry, the section entity representation, the section coordinate-redius representation and the section primitive geometru were adopted. This system includes six major modules such as input module, forging design module, forming sequence design module, die design module, FEM verification module and output module which are used independently or in all. The sequence drawing wigh all dimensions, which includes the dimensional tolerances and the proper sequence of operations, can generate under the environment of AutoCAD. The acceptable forming sequences can be verified further, using the FE simulation.

  • PDF

The development of FE model for the precision prediction of strip profile in flat rolling (판 압연에서 판 형상 정밀 예측을 위한 유한요소 모델 개발)

  • Yun K. H.;Kim T. H.;Shin T. J.;Lee W. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.197-203
    • /
    • 2004
  • A full finite element (FE)-based approach is presented for the precision analysis of the strip profile in flat rolling. Basic FE models for the analysis of the mechanical behavior of the strip and of the rolls are described in detail. Also described is an iterative strategy for a rigorous treatment of the mechanical contact occurring at the roll-strip interface and at the roll-roll interface. Then, presented is an integrated FE process model for the coupled analysis of the mechanical behavior of the strip, work roll, and backup roll in four-high mill. A series of process simulation are conducted and the results are compared with the measurements made in hot and cold rolling experiments.

  • PDF

Optimization of tube-to-bar dissimilar FRW of hydraulic valve spool steels and the weld strength properties and its AE evaluation (유공압 밸브 스풀용 강재의 관 대 봉 이종재 마찰용접의 최적화와 용접강도특성 및 AE평가)

  • 오세규;김현필;장홍근;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.24-35
    • /
    • 1997
  • The hydraulic or pneumatic valve spools become essential as the important components on the production of automatic hydraulic or pneumatic as mechanical industry has been rapidly developed. The machining precision is in necessity for manufacturing the valve spools. They could be unstable in the quality by the conventional are welding. And also they have a lot of technical problems in manufacturing because their shapes are generally small. By the precision casting process such as lost wax process, the production cost may be increased. But by the friction welding technique, they will be able to be manufactured without such problems. This paper deals with the development of dissimilar friction welding optimization for the hydraulic or pneumatic valve spool by friction welding and a new approach of on real-time qualify evaluation by AE techniques.

  • PDF

A Research on DLC Thin Film Coating of a SiC Core for Aspheric Glass Lens Molding (비구면 유리렌즈 성형용 SiC 코어의 DLC 코팅에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.28-32
    • /
    • 2010
  • Technical demands for aspheric glass lens formed in market increases its application from simple camera lens module to fiber optics connection module in optical engineering. WC is often used as a metal core of the aspheric glass lens, but the long life time is issued because it fabricated in high temperature and high pressure environment. High hard thin film coating of lens core increases the core life time critically. Diamond Like Carbon(DLC) thin film coating shows very high hardness and low surface roughness, i.e. low friction between a glass lens and a metal core, and thus draw interests from an optical manufacturing industry. In addition, DLC thin film coating can removed by etching process and deposit the film again, which makes the core renewable. In this study, DLC films were deposited on the SiC ceramic core. The process variable in FVA(Filtered Vacuum Arc) method was the substrate bias-voltage. Deposited thin film was evaluated by raman spectroscopy, AFM and nano indenter and measured its crystal structure, surface roughness, and hardness. After applying optimum thin film condition, the life time and crystal structure transition of DLC thin film was monitored.

Hard Turning Machinability of V30 Cemented Carbide with PCD, cBN and PcBN Cutting Tool (초경합금재의 하드터닝에서 공구재종에 따른 절삭성)

  • Heo, Sung-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.47-54
    • /
    • 2008
  • Hard turning process can be defined as a single-point machining process carried out on "hard" materials. The process is intended to replace or limit traditional grinding operations that are expensive, environmentally unfriendly, and inflexible. The purpose of this study is to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, tool wear shape and chip formation by the outer cutting of a kind of wear resistant tungsten carbide V30. Hard turning experiments were carried out on this alloy using the PCD (Poly Crystalline Diamond), cBN (cubic Boron Nitride) and PcBN (Polycrystalline cubic Boron Nitride) cutting tools. The PcBN and the usual cBN tools were used to be compare with the PCD tool and the dry turning was carried out. The PcBN is attractive as the tool material which replaces the PCD. The tool wear width and cutting force were measured, and the worn tool and chip were observed. The difference of the tool wear mechanism among the three tool materials was investigated.