• Title/Summary/Keyword: Technical System Theory

검색결과 246건 처리시간 0.033초

생체모방 접근법을 반영한 현대 패션의 유기적 형태 생성 (Organic Form Generation Reflecting a Biomimetic Approach in Contemporary Fashion)

  • 노주현
    • 한국의류학회지
    • /
    • 제46권5호
    • /
    • pp.927-943
    • /
    • 2022
  • This study explores the organic form generation method, which reflects the evolving biomimetic approaches converging in fashion technology and considers the characteristics of the organic relationship between the body and the clothing to be represented in contemporary fashion. A literature review on biomimetic architecture and design-related theory and a case study on biomimetic fashion were both conducted. Images, articles, and data related to biomimicry fashion and clothing, including the increase in virtual fashion cases around 2020, were analyzed based on the literature review. Biomimicry was used to derive interdisciplinary similarities in the organic morphogenesis principle, and the result was categorized as a network system, folds and unfolds, pneumatic structures, auxetic growth, and membranes. The biomimetic fashion characteristics, including externalization of the body's interior, expansion of the body structure and silhouette, body protection, independence from the body, and post-human expression through virtualization, were analyzed. Morphogenetic processes performed through biomimetic vision are expected to aid in generating research on the possibility of mass production or popularization in the future through various experimental technical studies.

Virtual Internship Experiences of Library and Information Science Students During the Pandemic

  • Daniel Jr. Soriano Balbin;Russell Battad Dolendo
    • Journal of Information Science Theory and Practice
    • /
    • 제11권3호
    • /
    • pp.58-78
    • /
    • 2023
  • This study aimed to discover the notable experiences of Library and Information Science students in a virtual internship program. It employed qualitative descriptive research design by thematically analyzing the monthly internship journal of the interns. Using Colaizzi's method to identify themes from their experiences, the study revealed that interns expected to gain knowledge and skills on operations, services, and new information communication technologies in libraries. Orientation was found helpful in identifying the things interns needed to prepare. The interns faced issues from procrastination and technical difficulties, which they coped with employing avoidance strategies. Overall, the internship was viewed as an opportunity to learn and navigate the online digital system of the library despite the coronavirus disease 2019 pandemic. They realized their capacity and reflected on which competencies need improvement. In conclusion, students still learned the necessary knowledge and skills of a librarian; experienced the challenges faced in an actual library and were provided with various opportunities and realizations regarding the practice of librarianship. This study proposed a three-stage framework that outlines the involvement of the supervising instructors, librarians, and interns in the internship program from the preparation to the process and post-assessment.

Effects of micromechanical models on the dynamics of functionally graded nanoplate

  • Tao Hai;A. Yvaz;Mujahid Ali;Stanislav Strashnov;Mohamed Hechmi El Ouni;Mohammad Alkhedher;Arameh Eyvazian
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.191-206
    • /
    • 2023
  • The present research investigates how micromechanical models affect the behavior of Functionally Graded (FG) plates under different boundary conditions. The study employs diverse micromechanical models to assess the effective material properties of a two-phase particle composite featuring a volume fraction of particles that continuously varies throughout the thickness of the plate. Specifically, the research examines the vibrational response of the plate on a Winkler-Pasternak elastic foundation, considering different boundary conditions. To achieve this, the governing differential equations and boundary conditions are derived using Hamilton's principle, which is based on a four-variable shear deformation refined plate theory. Additionally, the Galerkin method is utilized to compute the plate's natural frequencies. The study explores how the plate's natural frequencies are influenced by various micromechanical models, such as Voigt, Reuss, Hashin-Shtrikman bounds, and Tamura, as well as factors such as boundary conditions, elastic foundation parameters, length-to-thickness ratio, and aspect ratio. The research results can provide valuable insights for future analyses of FG plates with different boundaries, utilizing different micromechanical models.

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • 제13권3호
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

시스템적인 군집 확인과 뉴스를 이용한 주가 예측 (Predicting stock movements based on financial news with systematic group identification)

  • 성노윤;남기환
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.1-17
    • /
    • 2019
  • 빅데이터 시대에 정보의 양이 급증하고, 그중 많은 부분을 차지하는 문자열 정보를 정량화하여 의미를 찾아 낼 수 있는 인공지능 방법론이 함께 발전하면서, 텍스트 마이닝을 통해 주가 예측에 적용해 온라인 뉴스로 주가를 예측하려는 시도가 다양해지고 있다. 이러한 주가 예측의 방법은 대개 예측하고자 하는 기업의 뉴스로 주가를 예측하는 방식이다. 하지만 특정 회사의 뉴스만이 그 회사의 주가에 영향을 주는 것이 아니라, 그 회사와 관련성이 높은 회사들의 뉴스 또한 주가에 영향을 줄 수 있다. 그러나 관련성이 높은 기업을 찾는 것은 시장 전반의 공통적인 영향과 무작위 신호 때문에 쉽지 않다. 따라서 기존 연구들은 주로 미리 정해진 국제 산업 분류 표준에 기반을 둬 관련성이 높은 기업을 찾았다. 하지만 최근 연구에 따르면, 국제 산업 분류 표준은 섹터에 따라 동질성이 다르며, 동질성이 낮은 섹터는 그들을 모두 함께 고려하여 주가를 예측하는 것이 성능에 악영향을 줄 수 있다는 한계점을 가진다. 이러한 한계점을 극복하기 위해, 본 논문에서는 주가 예측 연구에서 처음으로 경제물리학에서 주로 사용되는 무작위 행렬 이론을 사용하여 시장 전반 효과와 무작위 신호를 제거하고 군집 분석을 시행하여 관련성이 높은 회사를 찾는 방법을 제시하였다. 또한, 이를 기반으로 관련성이 높은 회사의 뉴스를 함께 고려하며 다중 커널 학습을 사용하는 인공지능 모형을 제시한다. 본 논문의 결과는 무작위 행렬 이론을 통해 시장 전반의 효과와 무작위 신호를 제거하여 정확한 상관 계수를 찾아 군집 분석을 시행한다면 기존 연구보다 더 좋은 성능을 보여 준다는 것을 보여준다.

이산화탄소 포집 시스템 개념설계 개발을 위한 시스템 엔지니어링 기반 접근방법 (Systems Engineering-based Approach In Developing Concept Design Of Carbon Capture System)

  • 이창환;홍대근;윤수철;서석환;서활원
    • 시스템엔지니어링학술지
    • /
    • 제9권2호
    • /
    • pp.23-36
    • /
    • 2013
  • Plant industry is one of technology-intensive and most prosperous industries in Korea because of its recent prosperity and promising outlook in export. However, no Korean EPC company has yet been well prepared in lifting their capacity sufficient enough to get the upstream conceptual or basic design and engineering orders for sizable plant projects which are known as the more value-added. If systems engineering, a methodology which developed complex systems such as airplanes and has been justified its effectiveness in Defense and NASA projects, can be integrated with plant engineering which should be developed and applied based on the requirements of so many stakeholders, conditions, lifecycle concepts, and constraints of the projects, huge synergic effect is expected particularly in developing a specific upstream design, which is a conceptual or basic design. The notion of integration with each other between systems engineering and plant engineering can be really the crux of EPC's success in any plant projects. This paper suggests an approach showing a methodology how to dig out, analyze, evaluate, verify and implement the stakeholders' requirements into a plant design in conceptual phase using the theory and skills of systems engineering. ISO/IEC 15288 well known systems engineering standards is used. Carbon capture system is used for a case study, for it is an emerging technology in reducing emissions of carbon dioxide causing global warming from flue gas after combustion. Here systems engineering was proven to play a substantial role in enhancing the capability of designers in developing a conceptual design of whole plant or certain part of crucial plant systems.

4-레그 PWM 컨버터/인버터와 AC 리액터를 사용한 새로운 3상 라인 인터렉터브 무정전전원장치의 개발 (Development of Novel 3-Phase Line-interactive UPS System using 4-leg PWM Converter/Inverter and AC Reactor)

  • 지준근;김효성;설승기;김경환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.77-81
    • /
    • 2004
  • In this paper a novel line interactive UPS (Uninterruptible Power Supply) using the two 4-leg VSCs and AC line reactor is proposed. The 4-leg Voltage Source Converter(VSC) can use the DC link voltage effectively by the 3-D SVPWM method. Hence the DC battery voltage can be reduced by $15\%$ in comparison to that of the conventional line-interactive UPS system. One VSC is in parallel with the AC line reactor of the power source side, and the other is in series with the load. The parallel 4-leg voltage source inverter controls three-phase line voltage independently in order to control the line reactor current indirectly. It eliminates the neutral line current and the active ripple power of the source side using the pqr theory so that unity power factor and the sinusoidal source current can be achieved even though both the source and the load voltages have zero sequence components. The series 4-leg voltage source inverter compensates the line voltage and allows the load voltage to be balanced and harmonic-free. Both of parallel and series 4-leg voltage source inverters always act as independently controllable voltage sources, so that three-phase output voltage shows a seamless transition to the backup mode. The feasibility of the proposed UPS system has been investigated and verified through computer simulation results.

  • PDF

위험성 평가 기반의 U-도면정보 시스템에 관한 연구 (A Study on U-Drawing Information System Based on Risk Assessment)

  • 고재욱;유진환;이헌석
    • 한국가스학회지
    • /
    • 제11권2호통권35호
    • /
    • pp.71-77
    • /
    • 2007
  • 이 연구에서는 위험성 평가를 기반으로 한 U-도면정보 시스템을 제안하였다. 제안된 U-도면정보 시스템의 기술적 특징은 P&ID등 공정정보를 기본 자료로서 활용하는 정량적 위험성 평가를 도면상에서 직접 수행할 수 있는 구조로 구성되었다는 것이다. 따라서 기존의 방식으로 위험성 평가를 수행할 때 보다 효율적이고, 간편한 정보 검색을 할 수 있게 되었다. U-도면정보 시스템은 CAD file로 존재하는 모든 도면을 CAD S/W 없이 Web 기반 환경에서 쉽게 볼 수 있도록 설계하였다. 이는 플랫폼(U-단말기)을 이용하여 공정내 어디에서나 브로드밴드, IPv6로 접속이 가능하며, 센서 기능과 개인 인증기능 등을 통하여 항상 도면정보 시스템에 접속할 수 있도록 기존의 도면정보 시스템과 달리 Web 기반으로 시스템을 구성하였다. 이러한 결과는 기존의 단순한 해당 업무에 대한 검토가 아닌 위험도를 고려한 장치산업의 체계적 안전장치를 제공한다. 또한, 의사결정단계에서 공학 기술적 이론에 충실한 판단 근거들을 제시하였다

  • PDF

축 처짐과 선미관 저널 베어링 유막 압력의 상호작용을 고려한 추진축계 정렬 해석 (Propulsion Shafting Alignment Analysis Considering the Interaction between Shaft Deflection and Oil Film Pressure of Sterntube Journal Bearing)

  • 조대승;장흥규;진병무;김국현;김성찬;김진형
    • 대한조선학회논문집
    • /
    • 제53권6호
    • /
    • pp.447-455
    • /
    • 2016
  • Precise propulsion shafting alignment of ships is very important to prevent damage of its support bearings due to excessive reaction forces caused by hull deflection, forces acted on propeller and crankshaft, and so forth. In this paper, a new iterative shafting alignment calculation procedure considering the interaction between shaft deflection and oil film pressure of Sterntube Journal Bearing (SJB) bush with single or multiple slopes is proposed. The procedure is based on a pressure analysis to evaluate distributed equivalent support stiffness of SJB by solving Reynolds equation and a deflection analysis of shafting system by a finite element method based on Timoshenko beam theory. SJB is approximated with multi-point biaxial elastic supports equally distributed to its length. Their initial stiffness values are estimated from dynamic reaction force calculated by assuming SJB as single rigid support. Then, the shaft deflection and the support stiffness of SJB are sequentially and iteratively calculated by applying a criteria on deflection variation between sequential calculation results. To demonstrate validity and applicability of the proposed procedure for optimal slope design of SJB, numerical analysis results for a shafting system are described.

Parametric study of the wave dispersion in the hydro-elastic system consisting of an inhomogeneously prestressed hollow cylinder containing compressible inviscid fluid

  • Surkay D. Akbarov;Gurbaneli J. Veliyev
    • Coupled systems mechanics
    • /
    • 제12권1호
    • /
    • pp.41-68
    • /
    • 2023
  • The present work is concerned with the study of the influence of inhomogeneous initial stresses in a hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes.