• Title/Summary/Keyword: Tear Seam

Search Result 4, Processing Time 0.017 seconds

A Study on Opening Analysis of Milling type Tear Seam of Hard IP Invisible PAB Door (Hard IP Invisible PAB 의 밀링타입 Tear Seam 해석 방안 연구)

  • Choi, Y.H.;Lee, K.W.;Ahn, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.464-468
    • /
    • 2008
  • In most of the passenger side airbag door in hard type IP today is designed with invisible tear-seam line. In order to design the tear-seam invisible, the tear-seam must be designed with required RWT (residual wall thickness) that is just thick enough to be broken by the PAB pressure on deployment and not by other surrounding impact forces. Hence, keeping the right optimum opening force is very important, and finding the right RWT became the key in designing the tear-seam. The study conducted in this paper describes the search for the optimum RWT around the tear-seam by using finite element method and the optimum RWT is suggested for milling type tear-seam having V-shape cross-section.

  • PDF

A Study on the Passenger Airbag Design Parameters Influencing Child Injury (어린이 상해에 영향을 주는 조수석 에어백 설계 인자에 대한 연구)

  • Choi, Won-Jung;Kim, Kwon-Hee;Ko, Hun-Keon;Kim, Dong-Seok;Son, Chang-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • The passenger airbag(PAB) designed for standard sized adults may induce unexpected results to children in out-of-position(OOP) postures. In this work, using MADYMO software, simulations of the OOP injury of children have been performed with respect to PAB design parameters and child dummy positions. The attention is focused on some details with respect to the injury of 3 and 6 year old children in two OOP postures. Among the various design parameters of the passenger airbag systems, four parameters are selected for the sensitivity analysis of the injury with the Taguchi method: bag folding pattern, vent hole size, position of the cover tear seam and the type of door tear seam. An optimal combination of the parameters is suggested.

Case History of Sea Dyke Construction Using Geotextile Mat (토목섬유매트를 활용한 호안축조공사 사례 연구)

  • Park, Jeong-Jun;Kim, Sung-Hwan;Shin, Eun-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.7-13
    • /
    • 2008
  • Geosynthetic damage has attracted a major attention since the introduction of geotextiles for civil construction applications. Geotextile is one of the most useful and effective polymer material in civil construction works and the main function of geotextile is separation, reinforcement, filtering and drainage. Recently, because of the shortage of natural rock, traditional forms of river and coastal structures have become very expensive to build and maintain. This study tries to suggest the method of estimating valid stitching rate and the methodology of sea dyke construction over soft soils for more reasonable application of geotextile mat by studying tensile strength, bursting strength, punching strength, tear strength that are considered when analyzing and designing geotextile mat of a field.

  • PDF

Performance Evaluation of Protective Clothing Materials for Welding in a Hazardous Shipbuilding Industry Work Environment (조선업의 유해 작업환경 대응을 위한 용접 보호복 소재의 성능평가 연구)

  • Kim, Min Young;Bae, Hyun Sook
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.452-460
    • /
    • 2013
  • This study conducted a performance evaluation of protective clothing materials used for welding in a hazardous shipbuilding industry work environment. The welding process was selected as the one that most requires industrial protective clothing according to work environment characteristics. Flame proofing and convection heat protection performance (HTI) in the heat transfer characteristics of protective clothing material were indicated in the order of SW1(Oxidant carbon)>SW2(silica coated Oxidant carbon)>SW4(Oxidant carbon/p-aramid)>SW3(flame proofing cotton). However, radiant heat protection performance (RHTI) and the heat transfer factor (TF) were indicated in the order of SW1>SW4>SW2>SW3 and showed different patterns from the convection heat protection performance. SW1 showed superior air permeability and water vapor permeability. The tensile strength and tear strength of welding protective clothing material were indicated in the order of SW4>SW2>SW3>SW1 and showed that a blend fabric of p-aramid was the most superior for the mechanical properties of SW4. SW1 had excellent heat transfer properties in yet met the minimum performance requirements of tensile strength proved to be inappropriate as being a material for welding protective clothing. The abrasion resistance of woven fabric proved superior compared to nonwoven fabric; however, seam strength and dimensional change both met the minimum performance requirements and indicated that all samples appeared non-hazardous. Finally, oxidant carbon/p-aramid blend fabric appeared appropriate as a protective clothing materials for welding.