• Title/Summary/Keyword: Team atmosphere

Search Result 180, Processing Time 0.025 seconds

Deposition and Luminescent Characterization of $Y_3Al_5O_{12}$:Ce Thin Film Phosphor

  • Kim, Joo-Won;Han, Sang-Hyuk;Kim, Young-Jin;Chung, Sung-Mook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.657-659
    • /
    • 2004
  • Trivalent cerium ($Ce^{3+}$) activated yttrium aluminum garnet ($Y_3Al_5O_{12}$, YAG) phosphor thin films were deposited on quartz glass substrates by rf magnetron sputtering. The effects of sputtering parameters and annealing condition on the luminescent properties were investigated. The sputtering parameters were $O_2$/Ar gas ratio, rf power, and deposition time. The films were annealed at 1200 $^{\circ}C$ for 5 hours in $N_2+$vacuum atmosphere. Polycrystalline YAG:Ce thin film phosphor could be obtained with a gas ratio of $O_2$/(Ar+$O_2$)=0.5 after post-annealing. PL spectra excited at 450 nm showed a yellow single band at 550 nm.

  • PDF

The Condition Analysis about Job Satisfaction and Separation Propensity of Foodservice Industry Culinary Employee′s (외식산업 조리종사자의 직무만족과 이직성향에 대한 실태분석)

  • 이선호;김선희;김민수
    • Culinary science and hospitality research
    • /
    • v.9 no.4
    • /
    • pp.37-53
    • /
    • 2003
  • The purpose of this study was to find out efficient control plan for productivity increase. To analyze the data, the measure of question a paper was used to 5 a point measure, statistics disposition was used to SPSS, the analyze method was used to frequency analyze, trust degree analyze, difference analyze useful average value, person's correlation analyze, revolution analyze. The results of this study could be explained as follow: First, find out high change separation propensity. Secondly, was subjected important for atmosphere composition and was required strategy consideration for stable job recognition. Third, was operated affirmative to recognition about separation and was increased to job satisfaction according as a colleague relation and team work. Fourth, was increased to comparative separation propensity in case that high job satisfaction. Therefore it is required interesting labor item and treatment development about personal evaluation.

  • PDF

ABSOLUTE RADIOMETRIC CALIBRATION OF 1M SATELLITE IMAGERY

  • Lee Sun-Gu;Lee Dong-han;Seo Doo-chun;Song Jeong Heon;Kim Yongseung;Paik Hongyul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.616-619
    • /
    • 2005
  • CALNAL team of Korea Aerospace Research Institute(KARI) performed field campaigns for absolute radiometric calibration of 1m satellite image on Daejeon and the cal/val site of Goheung. The satellite image have spatial resolution of 1m in panchromatic spectral band of 450-900nm. The performed cal/val method is the reflectance-based of vicarious calibration methods. We collected ground-based and meteology data such as temperature, surface pressure and reflectance of targets, and radiosonde data used only to test in Goheung. Data collected on each field served as input to radiative transfer codes to generate a top-of-atmosphere(TOA) radiance estimate. Derived TOA is compared with DN of overpass satellite to calculate calibration coefficient of gain and offset.

  • PDF

Effects of heat treatment and substrates on luminescent characteristics of $ZnGa_O_4:Mn$ thin film phosphor (열처리조건과 기판이 $ZnGa_O_4:Mn$ 박막 형광체의 발광특성에 미치는 영향)

  • Chung, Sung-Mook;Kim, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.181-184
    • /
    • 2004
  • The green emitting phosphor, $ZnGa_2O_4:Mn$ thin film with spinel structure were deposited by rf magnetron sputtering. Thin film phosphors were heat-treated in nitrogen, vacuum and air atmosphere, respectively. The effects of the substrates, heat-treatment conditions and the sputtering parameters were investigated. The growing behavior and luminescent properties of thin films depend on the crystallinity of the substrates. The Ga/Zn atomic ratios and luminescent characteristics were dependent on the annealing conditions.

  • PDF

Study on Cold/Oil Atmosphere Resistance Property of Face Seal Rubber for Track Layer

  • Shin, Jae Won
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • A face seal comprising a metal ring and acrylonitrile butadiene rubber (NBR) was installed in the driving part and suspension unit. The seal serves as a bearing and simultaneously prevents entry of foreign matter from external environment as well as internal oil leakage. Subsequently, the rubber-rod ring generates axial pressure owing to rubber elasticity (hardness), performs static sealing function between housing details and outer diameter of seal, and transmits rotational torque to the rotating support ring. In order to improve the durability of NBR, which performs the above tasks, and to effectively use it in tracked-vehicle applications at extreme temperatures, this study reports a mixing design approach to enhance cold and oil resistances of NBR.

Uranium Recovery from Nuclear Fuel Powder Conversion Plant Filtrate and its Thermal Decomposition Characteristics (핵연료분말 제조공정에서 발생된 여액으로부터 우라늄 회수 및 회수된 우라늄 화합물의 열분해 특성)

  • Jeong, Kyung-Chai;Jeong, Ji-Young;Kim, Byung-Ho;Kim, Tae-Joon;Choi, Jong-Hyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.204-209
    • /
    • 2002
  • In this study, $UO_4{\cdot}2NH_4F$, the precipitates which has low solubility, was obtained by chemical precipitation method to recover and reuse the trace uranium from the liquid waste producing in AUC process and for this compound it was characterized by means of chemical analysis, TG-DTA, XRD and FT-IR analyses. This compound was analyzed as $UO_4{\cdot}2NH_4F$ and shape of this precipitate was hexagonal type, having the size of 2∼3 ${\mu}m$. Also, the intermediates were obtained as $UO_4F,\;UO_4,\;UO_3,\;and\;U_3O_8$ by the thermal decomposition over the temperature of 220, 310, 515 and 640$^{\circ}C$, respectively. It is concluded that under the condition of a constant heating rate of 5$^{\circ}C$/min in air atmosphere range of between room temperature and 800$^{\circ}C$, thermal decomposition reaction mechanism of $UO_4{\cdot}2NH_4F$ is as follow; $UO_4{\cdot}2NH_4F{\rightarrow}UO_4F{\rightarrow}UO_4{\rightarrow}UO_3{\rightarrow}U_3O_8$.

Future Projection of Extreme Climate over the Korean Peninsula Using Multi-RCM in CORDEX-EA Phase 2 Project (CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Byun, Young-Hwa;Kim, Tae-Jun;Kim, Jin-Won;Kim, Yeon-Hee;Ahn, Joong-Bae;Cha, Dong-Hyun;Min, Seung-Ki;Chang, Eun-Chul
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.607-623
    • /
    • 2021
  • This study presents projections of future extreme climate over the Korean Peninsula (KP), using bias-corrected data from multiple regional climate model (RCM) simulations in CORDEX-EA Phase 2 project. In order to confirm difference according to degree of greenhouse gas (GHG) emission, high GHG path of SSP5-8.5 and low GHG path of SSP1-2.6 scenario are used. Under SSP5-8.5 scenario, mean temperature and precipitation over KP are projected to increase by 6.38℃ and 20.56%, respectively, in 2081~2100 years compared to 1995~2014 years. Projected changes in extreme climate suggest that intensity indices of extreme temperatures would increase by 6.41℃ to 8.18℃ and precipitation by 24.75% to 33.74%, being bigger increase than their mean values. Both of frequency indices of the extreme climate and consecutive indices of extreme precipitation are also projected to increase. But the projected changes in extreme indices vary regionally. Under SSP1-2.6 scenario, the extreme climate indices would increase less than SSP5-8.5 scenario. In other words, temperature (precipitation) intensity indices would increase 2.63℃ to 3.12℃ (14.09% to 16.07%). And there is expected to be relationship between mean precipitation and warming, which mean precipitation would increase as warming with bigger relationship in northern KP (4.08% ℃-1) than southern KP (3.53% ℃-1) under SSP5-8.5 scenario. The projected relationship, however, is not significant for extreme precipitation. It seems because of complex characteristics of extreme precipitation from summer monsoon and typhoon over KP.

Characteristics of Signal-to-Noise Paradox and Limits of Potential Predictive Skill in the KMA's Climate Prediction System (GloSea) through Ensemble Expansion (기상청 기후예측시스템(GloSea)의 앙상블 확대를 통해 살펴본 신호대잡음의 역설적 특징(Signal-to-Noise Paradox)과 예측 스킬의 한계)

  • Yu-Kyung Hyun;Yeon-Hee Park;Johan Lee;Hee-Sook Ji;Kyung-On Boo
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.55-67
    • /
    • 2024
  • This paper aims to provide a detailed introduction to the concept of the Ratio of Predictable Component (RPC) and the Signal-to-Noise Paradox. Then, we derive insights from them by exploring the paradoxical features by conducting a seasonal and regional analysis through ensemble expansion in KMA's climate prediction system (GloSea). We also provide an explanation of the ensemble generation method, with a specific focus on stochastic physics. Through this study, we can provide the predictability limits of our forecasting system, and find way to enhance it. On a global scale, RPC reaches a value of 1 when the ensemble is expanded to a maximum of 56 members, underlining the significance of ensemble expansion in the climate prediction system. The feature indicating RPC paradoxically exceeding 1 becomes particularly evident in the winter North Atlantic and the summer North Pacific. In the Siberian Continent, predictability is notably low, persisting even as the ensemble size increases. This region, characterized by a low RPC, is considered challenging for making reliable predictions, highlighting the need for further improvement in the model and initialization processes related to land processes. In contrast, the tropical ocean demonstrates robust predictability while maintaining an RPC of 1. Through this study, we have brought to attention the limitations of potential predictability within the climate prediction system, emphasizing the necessity of leveraging predictable signals with high RPC values. We also underscore the importance of continuous efforts aimed at improving models and initializations to overcome these limitations.

Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS (지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성)

  • Lee, Byung-Il;Sohn, Eun-Ha;Ou, Mi-Lim;Kim, Yoon-Jae
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.

Effect of Cerium Doping on Superconducting Properties of YBCO Film Prepared by TFA-MOD Method (MOD-TFA공정에 의한 YBCO박막 제조 시 cerium첨가효과에 관한 연구)

  • Yi, Keum-Young;Kwon, Youn-Kyung;Kim, Byeong-Joo;Ahn, Ji-Hyun;Lee, Jong-Beom;Kim, Hye-Jin;Lee, Hee-Gyoun;Hong, Gye-Won;Yoo, Jai-Moo;Ri, Hyung-Chul
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 2006
  • The effects of Ba and Ce addition has been investigated in YBCO prepared by trifluoroacetate(TFA) metalorganic depostition(MOD) method. Precursor solutions with cation ratios of Y:Ba:Cu:Ce=1:2+x:3:x(x=0, 0.05, 0.1 and 1.5) have been prepared by adding an excess amount of cerium and barium. Coated film was calcined at lower temperature under a moisture-containing oxygen atmosphere. Superconducting YBCO films have been obtained by performing conversion heat treatment at temperature of $780{\sim}810^{\circ}C$ under a moisture-containing Ar(1,000 ppm oxygen) atmosphere. It has been shown that the critical current($I_c$) of YBCO film was degraded by doping of Ba and Ce atoms. But $I_c$ was increased as the amount of doped Ba and Ce content increased from 5% to 15 %. It was observed that there was little increase of a flux pinning force with Ba and Ce addition in YBCO film prepared by TFA-MOD process.

  • PDF