• Title/Summary/Keyword: Team Simulation

Search Result 948, Processing Time 0.025 seconds

Light-weight Design and Simulation of Automotive Rear Bumper Impact Beam Using Boron Steels (보론강을 이용한 리어 범퍼 임팩트빔의 경량 설계 및 해석)

  • Kim, Kee-Joo;Han, Chang-Pyung;Lim, Jong-Han;Lee, Young-Suk;Won, Si-Tae;Lee, Jae-Woong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.98-102
    • /
    • 2012
  • Increasing the fuel economy has been an inevitable issue for the development of new cars, and one of the important measures to improve the fuel economy is to decrease the vehicle weight. In order to obtain this goal, the researches about lighter, stronger and the well impact absorbing bumper impact beam have been studied without sacrificing bumper safety. In this study, the overall weight reduction possibility of rear bumper impact beam could be examined based on the variation of frontal, offset and corner impact crash capability by substituting a ultra high strength steel material (boron steel ) having tensile strength of 1.5 GPa grade instead of conventional steels. In addition, the section variations (open section, closed section, open section with 5 stays) of the bumper impact beam structure were examined carefully. It could be reached that this analysis could be well established and be contributed for design guide and the optimum design conditions of the automotive rear bumper impact beam development.

Modeling of 3D Monte Carlo Ion Implantation in the Ultra-Low Energy for the Fabrication of Giga-Bit Devices (기가 비트급 소자 제작을 위한 3차원 몬테카를로 극 저 에너지 이온 주입 모델링)

  • Ban, Yong-Chan;Kwon, Oh-Seob;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.10
    • /
    • pp.1-10
    • /
    • 2000
  • A rigorous modeling of ultra-low energy implantation is becoming increasingly more important as devices shrink to deep submicron dimensions. In this paper, we have developed an efficient three-dimensional Monte Carlo ion implantation model based on a modified Binary Collision Approximation(BCA). To this purpose, the modified electronic stopping model and the multi-body collision model have been taken into account in this simulator. The dopant and damage profiles show very good agreement with SIMS(Secondary Ion Mass Spectroscopy) data and RBS(Rutherford Backscattering Spectroscopy) data, respectively. Moreover, the ion distribution replica method has been implemented into the model to get a computational efficiency in a 3D simulation, and we have calculated the 3D Monte Carlo simulation into the topographically complex structure.

  • PDF

Determining the Location of Metallic Needle from MR Images Distorted by Susceptibility Difference (자화율 차이로 인해 왜곡된 영상으로부터 금속 바늘의 위치 결정)

  • Kim, Eun-Ju;Kim, Dae-Hong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2010
  • Purpose : To calculate the appearance of the image distortion from metallic artifacts and to determine the location of a metallic needle from a distorted MR image. Materials and Methods : To examine metal artifacts, an infinite metal cylinder in a strong magnetic field are assumed. The cylinder’s axis leaned toward the magnetic field along some arbitrary angle. The Laplace equation for this situation was solved to investigate the magnetic field distortion, and the simulation was performed to evaluation the image artifact caused by both readout and slice-selection gradient field. Using the result of the calculation, the exact locations of the metal cylinder were calculated from acquired images. Results : The distances between the center and the folded point are measured from images and calculated. Percentage errors between the measured and calculated distance were less than 5%, except for one case. Conclusion : The simulation was successfully performed when the metal cylinder was skewed at an arbitrary tilted angle relative to the main magnetic field. This method will make it possible to monitor and guide both biopsy and surgery with real time MRI.

A Flexible Multi-body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

  • Moon Il-Dong;Yoon Ho-Sang;Oh Chae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1638-1645
    • /
    • 2006
  • This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of $1{\sim}2mm/sec$ and frequency of 132 mm. First, the simulation is conducted with the same condition as the test. Then, the simulations are conducted with various amplitudes in a loaded state. The hysteretic diagram from the test is compared with the ones from the simulation for the validation of the reliability of the model. The dynamic stress analysis of the taper leaf spring is also conducted with the developed flexible multi-body dynamic model under a dynamic loading condition.

Routing of ALVs under Uncertainty in Automated Container Terminals (컨테이너 터미널의 불확실한 환경 하에서의 ALV 주행 계획 수립방안)

  • Kim, Jeongmin;Lee, Donggyun;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.493-501
    • /
    • 2014
  • An automated lifting vehicle(ALV) used in an automated container terminal is a type of unmanned vehicle that can self-lift a container as well as self-transport it to a destination. To operate a fleet of ALVs efficiently, one needs to be able to determine a minimum-time route to a given destination whenever an ALV is to start its transport job. To find a route free from any collision or deadlock, the occupation time of the ALV on each segment of the route should be carefully scheduled to avoid any such hazard. However, it is not easy because not only the travel times of ALVs are uncertain due to traffic condition but also the operation times of cranes en route are not predicted precisely. In this paper, we propose a routing method based on an ant colony optimization algorithm that takes into account these uncertainties. The result of simulation experiment shows that the proposed method can effectively find good routes under uncertainty.

Task Sequence Optimization for 6-DOF Manipulator in Press Forming Process (프레스 공정에서 6자유도 로봇의 작업 시퀀스 최적화)

  • Yoon, Hyun Joong;Chung, Seong Youb
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.704-710
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator that is adequate for the narrow workspace of press forming processes. This paper addresses the task sequence optimization methods for the manipulator to minimize the task-finishing time. First, a kinematic model of the manipulator is presented, and the anticipated times for moving among the task locations are computed. Then, a mathematical model of the task sequence optimization problem is presented, followed by a comparison of three meta-heuristic methods to solve the optimization problem: an ant colony system, simulated annealing, and a genetic algorithm. The simulation shows that the genetic algorithm is robust to the parameter settings and has the best performance in both minimizing the task-finishing time and the computing time compared to the other methods. Finally, the algorithms were implemented and validated through a simulation using Mathworks' Matlab and Coppelia Robotics' V-REP (virtual robot experimentation platform).

The behavior of collagen-like molecules in response to different temperature setting methods in steered molecular dynamic simulation (다른 온도 조절 상태에서 분자 동역학에서 콜라겐 단백질의 거동)

  • Yoon, Young-June;Cho, Kang-Hee;Han, Seog-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.397-402
    • /
    • 2020
  • Collagen type I is the most abundant protein in the human body. It shows viscoelastic behavior, which is what confers tendons with their viscoelastic properties. There are two different temperature setting methods in molecular dynamics simulations, namely rescaling and reassignment. The rescaling method maintains the temperature by scaling the given temperature, while the reassignment method sets the temperature according to a Maxwell distribution at the target temperature. We observed time-dependent behavior when the reassignment method was applied in tensile simulation, but not when the rescaling method was applied. Time-dependent behavior was observed only when the reassignment method was applied or when one side of the collagen molecule was stretched to a greater extent than the other side. As result, the collagen is elongated to 80nm, 100nm, 130nm, and 180nm, respectively, when the collagen is pulled by different velocities, 0.5, 1, 2, and 5 Å/ps, up to 40 Å. The results do not provide a detailed physical explanation, but the phenomena illustrated in this result are important for caution when further simulations are performed.

Analysis of Resonant Characteristics in High Voltage Windings of Main Transformer for Railway Vehicle using EMTP (EMTP를 이용한 철도차량용 주변압기 고압권선의 공진특성 분석)

  • Jeong, Ki-Seok;Jang, Dong-Uk;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.436-444
    • /
    • 2016
  • The primary windings of the main transformer for rolling stock have several natural frequencies that can occur internal resonance with transient voltages induced on a high voltage feeding line. Factory testing is limited in its ability to determine whether or not transient voltage with various shape and duration can be excitable. This study presents the design of a high voltage windings model and simulation and analysis of the internal resonant characteristics in terms of the initial voltage distribution and voltage-frequency relationship using the electromagnetic transients program (EMTP). Turn-based lumped-parameters are calculated using the geometry data of the transformer. And, sub-models, being grouped into the total number of layers, are composed using a ladder-network model and implemented by the library function of EMTP. Case studies are used to show the layer-based voltage-frequency relationship characteristics according to the frequency sweep and the voltage escalation and distribution aspects in time-domain simulation.

Numerical Analysis of Natural Convection inside Spray Coating Room on Temperature Distributions (자연대류를 고려한 스프레이 코팅 룸에서의 온도분포 해석)

  • Kim, Nam Woong;Kim, Bo-Seon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.425-430
    • /
    • 2019
  • Zinc coatings are widely used because of their environmental friendliness and high performance. In general, the coating temperature is a major factor in determining the coating layer thickness and coating quality. In the case of a zinc coating, a uniform and appropriate coating temperature is required. In this study, a thermal flow simulation of the air flow was performed to analyze the temperature distribution of a zinc spray coating room in a natural convection state. Using SolidWorks, modeling was performed for two spray coating rooms, a preheating room, and a drying room, and a thermal flow coupled analysis was performed using ANSYS-FLUENT. As a result of the analysis, the temperature distribution characteristics in the spray coating rooms were determined. It was found that the present temperature was below the target temperature of $25^{\circ}C$. Simulations were conducted for two different boundary conditions (one with a heater added and another with the open part closed). The simulation results show that the method of closing the open part is better than adding the heater.

A Study on the Design and Implementation of Simulated Signal Generator for VHF Radar with High Interference and Immunity Characteristics (간섭신호 내성 및 격리도 특성이 우수한 초단파 레이다용 모의신호 발생장치의 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Lee, Sung-Je;Jang, Youn-Hui
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • This study describes the design and implementation of a simulated signal generator to demonstrate the performance of VHF band radar for the detection of small targets in RCS(Radar Cross Section). The transmission and reception antenna beam widths used in the simulated signal generating apparatus may be large, which may cause problems in the degree of isolation. Interference signal immunity and isolation characteristics are improved by considering operating conditions of VHF radar to solve isolation of antennas. Simulated signal generator performs the following: VHF radar transmission and reception correction, simulation signal generation, target Doppler, RCS and distance simulation, remote control, and GPS clock synchronization function. After the fabrication of the simulated signal generator, the main characteristics, such as the output characteristics and the reflection signal simulations, were tested. When the microwave radar assembly is completed in the future, it will be utilized for the performance evaluation of VHF radar.