• 제목/요약/키워드: Tea Seed Extract

검색결과 46건 처리시간 0.028초

차 부산물로부터 효소를 이용한 캠페롤 생산 (Production of kaempferol by enzymatic hydrolysis of tea seed extract)

  • 임윤영;김은기
    • KSBB Journal
    • /
    • 제23권2호
    • /
    • pp.131-134
    • /
    • 2008
  • 캠페롤은 항산화, 항염등의 성질을 가지고 있지만 생산이 쉽지가 않다. 차의 씨를 가공하고 발생하는 부산물 (tea seed extract)에는 캠페롤과 당이 결합되어 있는 형태인 camelliaside A와 camelliaside B가 포함되어 있다. 본 실험에서는 캠페롤을 효소의 가수분해에 의하여 생산하였다. 가장 효과적인 효소는 $pectinex^{(R)}100L$ 이며, 효소 반응에서 캠페롤은 48시간내에 생산되었다. 반응 최적 조건은 $40^{\circ}C$, pH 4이며 생산의 최적조건하에서 차 부산물 1 kg당 1.6 g의 캠페롤이 생산되었고 약 80%의 캠페롤이 침전되었다. 효소반응에 의한 캠페롤 생산법은 생산물의 회수가 용이한 효과적인 방법임을 알 수 있다.

미세캡슐화한 녹차 및 자몽종자 추출물이 Murine RAW 264.7 대식세포주의 항염증에 미치는 영향 비교 (A comparison of anti-inflammatory activities of green tea and grapefruit seed extract with those of microencapsulated extracts)

  • 전윤경;김명환;성필남;장문정
    • Journal of Nutrition and Health
    • /
    • 제45권5호
    • /
    • pp.443-451
    • /
    • 2012
  • We compared the effects of grapefruit seed extract (GFSE), green tea extract (GT) and their microencapsulated extract on anti-inflammatory activities in murine RAW 264.7 macrophages cell line. In order to protect the bioactive compounds in the extracts, they were microencapsulated with maltodextrin and $H_2O$. Nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), inducible nitric oxide synthase (iNOS) protein expression and thiobarbiturate reactive substances (TBARS) were analyzed in LPS activated RAW 264.7 macrophages. The green tea extract at the range of $100-600{\mu}g/mL$ inhibited NO, PGE2 production and iNOS protein expression without cytotoxicity in a dose-dependent manner. Grapefruit seed extract had strong inhibitory effects on NO and PGE production and iNOS protein expression at the range of $5-20{\mu}g/mL$ without cytotoxicity. Microencapsulation of green tea extract had further inhibitory effects on NO and PGE2 production and on iNOS protein expression, whereas microencapsulated GFSE did not show any further inhibitory effects on these parameters. Taken together, our results suggest that GSFE might be a promising candidate for preventing inflammation related diseases, such as cardiovascular disease, cancer or diabetes, and the microencapsulation of green tea extract could improve its bioactivity.

Grapefruit seed extract와 7종의 Essential oil 및 혼합 Essential oil의 항균 활성 (Antibacterial activity of grapefruit seed extract and seven kinds of essential and blended essential oils)

  • 육영삼
    • 융합정보논문지
    • /
    • 제11권6호
    • /
    • pp.198-205
    • /
    • 2021
  • 본 배경 : 질염은 항생제를 복용하는 방식으로 치료를 하고 있으며, 이러한 항생제의 지속적인 치료는 내성을 유발할 수 있다. 연구 방법 : Lactic acid bacteria 2종에 에센셜 오일을 이용한 항균 활성을 보고자 한다. SE(Grapefruit Seed Extract), eucalyptus, tea tree, clove bud oil, cinnamon oil, lemongrass oil, thyme oil, ginger oil을 일정 비율로 넣어 배양 후, 병원성 미생물- E. coli, C. albicans와 Lactic acid bacteria은 균주에 맞는 배지를 사용하여 균 수를 측정하였다. 결과 : Essential oil 7종과 GSE가 병원성 미생물에 억제 효과가 있으며, 병원성균(E. coli, C. albicans)에 대한 Grapefruit seed extract(GSE)의 억제농도를 확인하였다, 병원성균은 억제하고 Lactic acid bacteria는 억제하지 않는 배합비도 확인하였다(GSE 농도가 200ppm에서 Eucalyptus globulus(EG) oil 50㎕와 Melaleuca alternifolia oil(Tea tree oil, TTO) 50㎕(pH 5.0, 5.5, 6.0)). 결론 : 본 실험에서 Essential oil은 다양한 항균 활성 가지고 있어 항생제 대안으로도 생각할 수 있으며, 장기 항생제 치료환자에 대한 보조 항균제로서도 유용할 것으로 생각된다.

Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation

  • Sinz, Susanne;Marquardt, Svenja;Soliva, Carla R.;Braun, Ueli;Liesegang, Annette;Kreuzer, Michael
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.966-976
    • /
    • 2019
  • Objective: The methane mitigating potential of various plant-based polyphenol sources is known, but effects of combinations have rarely been tested. The aim of the present study was to determine whether binary and 3-way combinations of such phenol sources affect ruminal fermentation less, similar or more intensively than separate applications. Methods: The extracts used were from Acacia mearnsii bark (acacia), Vitis vinifera (grape) seed, Camellia sinensis leaves (green tea), Uncaria gambir leaves (gambier), Vaccinium macrocarpon berries (cranberry), Fagopyrum esculentum seed (buckwheat), and Ginkgo biloba leaves (ginkgo). All extracts were tested using the Hohenheim gas test. This was done alone at 5% of dry matter (DM). Acacia was also combined with all other single extracts at 5% of DM each, and with two other phenol sources (all possible combinations) at 2.5%+2.5% of DM. Results: Methane formation was reduced by 7% to 9% by acacia, grape seed and green tea and, in addition, by most extract combinations with acacia. Grape seed and green tea alone and in combination with acacia also reduced methane proportion of total gas to the same degree. The extracts of buckwheat and gingko were poor in phenols and promoted ruminal fermentation. All treatments except green tea alone lowered ammonia concentration by up to 23%, and the binary combinations were more effective as acacia alone. With three extracts, linear effects were found with total gas and methane formation, while with ammonia and other traits linear effects were rare. Conclusion: The study identified methane and ammonia mitigating potential of various phenolic plant extracts and showed a number of additive and some non-linear effects of combinations of extracts. Further studies, especially in live animals, should concentrate on combinations of extracts from grape seed, green tea leaves Land acacia bark and determine the ideal dosages of such combinations for the purpose of methane mitigation.

Antiproliferative and Anticarcinogenic Enzyme-Inducing Activities of Green Tea Seed Extract in Hepatoma Cells

  • Lim, Hyun-Ae;Jang, Chan-Ho;Kim, Jang-Hoon;Kim, Ju-Ryoung;Ha, Young-Ran;Song, Young-Sun;Kim, Young-Kyoon;Kim, Jong-Sang
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.914-919
    • /
    • 2006
  • We investigated the catechin content in green tea leaf (GTL) and green tea seed (GTS), the antiproliferative and detoxifying phase II enzyme-inducing activities of the methanolic (80%, v/v) extracts from GTL and GTS. GTL and GTS contained $8,685{\pm}1,061$ and $108{\pm}32\;{\mu}g/g$ epigallocatechin gallate (EGCG), $11,486{\pm}506$ and $116{\pm}72\;{\mu}g/g$ epigallocatechin (EGC), $3,535{\pm}308$ and $821{\pm}95\;{\mu}g/g$ epicatechin gallate (ECG), and $1,429{\pm}177$ and $37{\pm}44\;{\mu}g/g$ epicatechin (EC), respectively. The methanolic extract of GTS showed a greater increase in quinone reductase activity and antiproliferation potential against mouse hepatoma cells than GTL extract did. GTS treatment resulted in the accumulation at sub-G1 phase of mouse hepatoma hepa1c1c7 cells as assessed by flow cytometry. Enhancement of phase II enzyme activity by GTS extract was shown to be mediated, directly or indirectly, via interaction with the antioxidant response element (ARE) sequence in the genes encoding the phase enzymes. As the catechin content in GTS was significantly lower than that in GTL, components other than catechins appear to be responsible for the anticarcinogenic activity of the seed. In summary, these results suggest that the 80% methanolic extract of GTS deserves further study to evaluate its potential as an anticarcinogenic agent and to investigate its mechanism of action.

Characterization of Angiogenesis Inhibitor Effect of Green Tea Seed Extract

  • Hwang, Jae-Ho;Lee, Sung-Hoon;Rha, Sung-Ju;Yoon, Ho-Seop;Shin, Jin-Hyuk;Lee, Jin-Hee;Seo, Myeong-Jin;Kang, Kyeong-Wan;Han, Kyeong-Ho;Kim, Yong-Joo;Kho, Kang-Hee;Kim, Seon-Jae;Shin, Tai-Sun
    • Animal cells and systems
    • /
    • 제13권2호
    • /
    • pp.133-139
    • /
    • 2009
  • Green tea seed was extracted with absolute ethanol,and the green tea seed extract(GTSE)was subjected to assays for toxicity, antioxidant ability, angiogenesis inhibitory effects and cell adhesion, as well as western blotting, and an in vivo experiment against 4 high-ranking adult cancers in Korea. Our series of experimental data demonstrated that GTSE has an antioxidant ability superior to that of EGCG in the green tea leaf, and also exhibits a profound high tumor growth inhibitory activity on a variety of cancer cell lines, as well as nude mice infected with cancer cells. GTSE was identified as a natural anticancer compound showing excellent angiogenesis inhibition and cancer cell suppression abilities. Our preliminary observations also indicate that GTSE may be another potential source of natural dietary antioxidants and also may be applicable as a novel natural anticancer agent.

Nutrient intake, digestibility and performance of Gaddi kids supplemented with tea seed or tea seed saponin extract

  • Kumar, M.;Kannan, A.;Bhar, R.;Gulati, A.;Gaurav, A.;Sharma, V.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권4호
    • /
    • pp.486-494
    • /
    • 2017
  • Objective: An experiment was conducted to determine the nutrient intake, digestibility, microbial protein synthesis, haemato-biochemical attributes, immune response and growth performance of Gaddi kids fed with oat fodder based basal diet supplemented with either tea seed or tea seed saponin (TSS) extract. Methods: Eighteen male kids, $7.03{\pm}0.16$ months of age and $19.72{\pm}0.64kg$ body weight, were distributed into three groups, $T_0$ (control), $T_1$, and $T_2$, consisting of 6 animals each in a completely randomized design. The kids were fed a basal diet consisting of concentrate mixture and oat fodder (50:50). Animals in group III ($T_2$) were supplemented with TSS at 0.4% of dry matter intake (DMI), and group II ($T_1$) were supplemented with tea seed at 2.6% of DMI to provide equivalent dose of TSS as in $T_2$. Two metabolism trials were conducted, 1st after 21 days and 2nd after 90 days of feeding to evaluate the short term and long term effects of supplementation. Results: The tea seed ($T_1$) or TSS ($T_2$) supplementation did not affect DMI as well as the digestibility of dry matter, organic matter, crude protein, neutral detergent fibre, and acid detergent fibre. Nutritive value of diet and plane of nutrition were also comparable for both the periods. However, the average daily gain and feed conversion ratio (FCR) were improved (p<0.05) for $T_1$ and $T_2$ as compared to $T_0$. The microbial protein supply was also higher (p<0.05) for $T_1$ and $T_2$ for both the periods. There was no effect of supplementation on most blood parameters. However, the triglyceride and low density lipoprotein cholesterol levels decreased (p<0.05) and high density lipoprotein-cholesterol level increased (p<0.05) in $T_2$ as compared with $T_0$ and $T_1$. Supplementation also did not affect the cell mediated and humoral immune response in goats. Conclusion: Tea seed at 2.6% of DMI and TSS at 0.4% DMI can be fed to Gaddi goats to improve growth rate, FCR and microbial protein synthesis.

고추씨 기름에 대한 다류 에탄올 추출물의 항산화 효과 (Antioxidative Effect of Ethanolic Extracts of Some Tea Materials on Red Pepper Seed Oil)

  • 정해정
    • 한국식품영양과학회지
    • /
    • 제28권6호
    • /
    • pp.1316-1320
    • /
    • 1999
  • Antioxidative effect of ethanolic extracts of various tea materials(Camellia sinensis, Cassia tora, Lyc ium chinense, Polygonatum odoratum, Schizandrae chinensis) on red pepper seed oil was investigated. Ethanolic extracts were added to red pepper seed oil at a concentration of 0.05%(w/v). Two experimental conditions were employed : 50$\pm$0.1oC for 45 days and 150$\pm$3oC for 24 hours. Oxidation of red pepper seed oil was determined by measuring peroxide value and acid value. Electron donating ability(EDA) and total phenolic contents of each extract were also determined. The result showed that the extracts possess an antioxidative activities. The effectiveness of them was in the following order: C. sinensis>C. tora>P. odoratum>S. chinensis >L. chinense. Ethanolic extracts of C. sinensis showed substantially higher EDA value and total phenol contents than other tea materials. These results indicate that the antioxidative effect was strongly related with EDA and total phenol contents.

  • PDF

Effects of a safflower tea supplement on antioxidative status and bone markers in postmenopausal women

  • Choi, Sung-Hee;Jang, Jeong-Hee;Yoon, Ji-Young;Hahn, Chi-Dong;Choi, Young-Sun;Choi, Sang-Won
    • Nutrition Research and Practice
    • /
    • 제5권1호
    • /
    • pp.20-27
    • /
    • 2011
  • We conducted this study to examine the effects of safflower seed granular tea containing physiologically active polyphenols on antioxidative activities and bone metabolism. Forty postmenopausal women ages 49 to 64-years were recruited from Daegu and Gyeongbuk and were randomly assigned to either a safflower tea supplement (Saf-tea) group (n=27) or a placebo group (n=13). The Saf-tea group received 20 g of safflower seed granule tea per day containing a 13% ethanol extract of defatted safflower seeds, whereas the placebo group received a similar type of tea that lacked the ethanol extract. No significant changes in nutrient intake for either the placebo or Saf-tea groups were observed before or after the study period, except vitamin A intake increased after 6 months in the Saf-tea group. Dietary phytoestrogen intakes were similar in the Saf-tea group (60.3 mg) and placebo group (52.5 mg). Significant increases in plasma genistein and enterolactone were observed in the Saf-tea group. After 6 months of supplementation, serum levels of antioxidant vitamins such as a-tocopherol and ascorbic acid increased significantly, and TBARS levels decreased in the Saf-tea group compared to the placebo group. Serum osteocalcin levels were reduced (P<0.05) in the Saf-tea group after 6 months, whereas serum osteocalcin did not change in the placebo group. Urinary deoxypyridinoline/creatinine excretion was not different between the two groups at baseline, and did not change in either group after 6 months. Bone mineral density decreased significantly in the placebo group (P<0.01) but not in the supplemented group. It was concluded that polyphenols (72 mg/day), including serotonin derivatives, in the Saf-tea had both antioxidant and potential bone protecting effects in postmenopausal women without liver toxicity.