• Title/Summary/Keyword: Te concentration

Search Result 194, Processing Time 0.027 seconds

Thermoelectric Properties of the Hot-pressed n-Type $Bi_2({Te_{0.85}}{Se_{0.15}})_3$ Alloy Prepared by Mechanical Alloying (기계적 합금화 공정을 이용하여 제조한 n형 $Bi_2({Te_{0.85}}{Se_{0.15}})_3$ 가압소결체의 열전특성)

  • Kim, Hui-Jeong;O, Tae-Seong;Hyeon, Do-Bin
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.246-252
    • /
    • 2000
  • Thermoelectric properties of the $Bi_2(Te_{0.85}Se_{0.15})_3$ alloy, prepared by mechanical alloying and hot pressing, were investigated with the variation of the hot-pressing temperature ranging from $300^{\circ}C$ to $550^{\circ}C$. Contrary to the p-type behavior of single crystal, the hot-pressed $Bi_2(Te_{0.85}Se_{0.15})_3$ alloy exhibited n-type conduction without addition of donor dopant. When the $Bi_2(Te_{0.85}Se_{0.15})_3$ powders were annealed in $(50{\%}\;H_2+50{\%}\;Ar)$ atmosphere, the hot-pressed specimens exhibited a positive Seebeck coefficient due to the reduction of the electron concentration by removal of the oxide layer on the powder surface and annealing-out of the excess Te vacancies. Figure-of-merit of the hot-pressed $Bi_2(Te_{0.85}Se_{0.15})_3$ alloy was improved by hot pressing at temperatures above $450^{\circ}C$, and the maximum value of $1.92{\times}10^{-3}/K$ was obtained for the specimen hot-pressed at $550^{\circ}C$.

  • PDF

Band-Gap Energy and Thermoelectric Properties of 90% $Bi_2Te_3-10% Bi_2Se_3$ Single Crystals (90% $Bi_2Te_3-10% Bi_2Se_3$ 단결정의 밴드갭 에너지와 열전특성)

  • Ha, Heon-Pil;Hyeon, Do-Bin;Hwang, Jong-Seung;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.349-354
    • /
    • 1999
  • The temperature dependences of the Hall coefficient, carrier mobility, electrical resistivity, Seebeck coefficient, thermal conductivity, and figure-of-merit of the undoped and $CdI_2$-doped 90% $Bi_2Te_3-10% Bi_2Se_3$, single crystals, grown by the Bridgman method, have been characterized at temperatures ranging from 77K to 600K. The saturated carrier concentration and degenerate temperature of the undoped 90% $Bi_2Te_3-10% Bi_2Se_3$ single crystal are $5.85\times10_{18}cm^{-3}$ and 127K, respectively. The scattering parameter of the 90% $Bi_2Te_3-10% Bi_2Se_3$ single crystal is determined to b -0.23, and the electron mobility to hole mobility ratio ($\mu_e/\mu_h)$ is 1.45. The bandgap energy at 0K of the 90% <$Bi_2Te_3-10% Bi_2Se_3$ single crystal is 0.200 eV. Adding $CdI_2$as a donor dopant, a maximum figure-of-merit of $3.2\times10^{-3}/K$$CdI_2$-doped specimen.

  • PDF

Fabrication of a Large-Area $Hg_{1-x}Cd_{x}$Te Photovoltaic Infrared Detector ($Hg_{1-x}Cd_{x}$Te photovoltaic 대형 적외선 감지 소자의 제작)

  • Chung, Han;Kim, Kwan;Lee, Hee-Chul;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.88-93
    • /
    • 1994
  • We fabricated a large-scale photovoltaic device for detecting-3-5$\mu$m IR, by forming of n$^{+}$-p junction in the $Hg_{1-x}Cd_{x}$Te (MCT) layer which was grown by LPE on CdTe substrate. The composition x of the MCT epitaxial layer was 0.295 and the hole concentration was 1.3${\times}10^{13}/cm^{4}$. The n$^{+}$-p junction was formed by B+ implantation at 100 keV with a does 3${\times}10^{11}/cm^{2}. The n$^{+}$ region has a circular shape with 2.68mm diameter. The vacuum-evaporated ZnS with resistivity of 2${\times}10^{4}{\Omega}$cm is used as an insulating layer over the epitaxial layer. ZnS plays the role of the anti-reflection coating transmitting more than 90% of 3~5$\mu$m IR. For ohmic contacts, gole was used for p-MCT and indium was used for n$^{+}$-MCT. The fabrication took 5 photolithographic masks and all the processing temperatures of the MCT wafer were below 90$^{\circ}C$. The R,A of the fabricated devices was 7500${\Omega}cm^{2}$. The carrier lifetime of the devices was estimated 2.5ns. The junction was linearly-graded and the concentration slope was measured to be 1.7${\times}10^{17}/{\mu}m$. the normalized detectivity in 3~5$\mu$m IR was 1${\times}10^{11}cmHz^{12}$/W, which is sufficient for real application.

  • PDF

Thickness and Annealing Effects on the Thermoelectric Properties of N-type $Bi_2Te_{2.4}Se_{0.6}$ Thin Films (N형 $Bi_2Te_{2.4}Se_{0.6}$ 박막의 열전 특성에 미치는 두께 및 열처리 효과)

  • Kim Il-Ho;Jang Kyung-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.153-158
    • /
    • 2005
  • The effective mean free path model was adopted to examine the thickness effect on the thermoelectric properties of flash-evaporated n-type $Bi_2Te_{2.4}Se_{0.6}$ thin films. Annealing effects on the electron concentration and mobility were also studied, and their variations were analyzed in conjunction with antisite defects. Seebeck coefficient and electrical resistivity versus inverse thickness showed a linear relationship, and the mean free path was found to be $5120\AA$ Electron mobility was increased by annealing treatment and electron concentration was decreased considerably due to reduction of antisite defects, so that electrical conductivity was decreased and Seebeck coefficient was increased. When annealed at 473k for 1 hour, Seebeck coefficient and electrical conductivity were $-200\;\mu V/k\;and\;510\omega^{-1}cm^{-1}$, respectively. Therefore, the thermoelectric power factor was improved to be $20\times10^{-4}\;W/(mK^2)$.

Electrolyte Mechanizm Study of Amorphous Ge-Se Materials for Memory Application (Ge-Se의 스위칭 특성 향상을 위한 Sb-doping에 관한 연구)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.69-69
    • /
    • 2009
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sh-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sh-doped Ge-Se-Te thin films.

  • PDF

Electrodeposition of Antimony Telluride Thin Films and Composition-Dependent Thermoelectric Characterization

  • Kim, Jiwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2020
  • Antimony telluride (SbxTey) thin films were synthesized by an electrodeposition method with a control of applied potential at room temperature. Characterization of electrical and thermoelectric properties such as conductivity, Seebeck coefficient, and power factor (P.F.) were conducted as a function of the chemical composition of the electrodeposited films. Morphology of thin films were dense and uniform and the composition was tailored from 25 to 60 at.% of the Sb content by altering the applied potential from -0.13 to -0.27 V (vs. SCE). The conductivity of the films were ranged from 2 × 10-4 ~ 5 × 10-1 S/cm indicating their amorphous behavior. The meaured Seebeck coefficient of films were relatively high compared to that of bulk single cyrstal SbxTey due to their low carrier concentration. The variation of the Seebeck coefficient of the films was also related to the change of chemical composition, showing the power factor of ~10 ㎼/mK2.

Tunneling Current Contribution to RoA of $Hg_{1-x}Cd_{x}$Te Photodiodes ($Hg_{1-x}Cd_{x}$Te 광다이오드에서 터널링 전류가 RoA에 미치는 영향)

  • 박장우;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.10
    • /
    • pp.42-48
    • /
    • 1992
  • RoA is an important figure of merits for estimating the performance of p-n junction infrared detectors. This paper presents the tunneling current contribution to RoA of $Hg_{1-x}Cd_{x}$Te n$^{+}$-p juction photodiodes. Then, a diffusion model, a thermal generation-recombination model, an indirect tunneling model via trap, and a band-to-band direct tunneling model are considered to calculate RoA. Using these models, RoA depending on temperature, doping concentration, and mole fraction is calculated. Also from these results, under various operating conditions the dominant dark current mechanisms cna be understood.

  • PDF

Fabrication and Characteristics of Blue-Green and Green LEDs using ZnSSe:Te Active Layers

  • Lee, Hong-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.991-996
    • /
    • 2010
  • Blue-green and green LEDs have been successfully fabricated grown by MBE, which has introduced the $ZnS_ySe_{1-x-y}:Te_x$ (x=0.04, y~0.11-0.14) ternary epilayer as an active layer. From the I-V characteristics, the built-in voltage (~2.1 V) is very small compared to other wide bandgap LEDs, such as commercial InGaN-based LEDs (>3.2 V). From the C-V profiling, the effective carrier concentration in the p-type ZnMgSSe cladding layer was evaluated as ${\sim}2.8{\times}10^{16}\;cm^{-3}$ for the present LEDs.

Wet-Etching Characteristics of Inorganic GeSbTe Films for High Density Optical Data Storage (고밀도 광기록을 위한 GeSbTe 박막의 Wet-Etching 특성연구)

  • Kim, Jin-Hong;Kim, Sun-Hee;Lee, Jun-Seok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.196-200
    • /
    • 2006
  • We are developing a phase change etching technology using an inorganic photoresist of GeSbTe film which is the recording material of the phase change disc. A selective etching phenomenon between amorphous and crystalline states can be utilized with an alkaline etchant. Phase-change pits could be formed using this technique, in which the etching selectivity is strongly dependent on the concentration of the etchant. The degree of etching was investigated by the transmittance between crystalline and amorphous films after the wet-etching. The pits patterned on the disc could be observed by AFM after wet-etching.

  • PDF

A Study on Ni Base Anti-galling alloy with Finely Dispersed Precipitates (석출상이 분산제어된 내마모성 니켈기 윤활합금 연구)

  • Kim, Young-Kyu;Kim, Kyung-Tak
    • Journal of Korea Foundry Society
    • /
    • v.26 no.4
    • /
    • pp.191-196
    • /
    • 2006
  • The effects of Bi and Te on the anti-galling behaviors of Ni base alloy were investigated by SEM, galling test and wear test. Anti-galling characteristics depended on the structure of matrix and distribution of Bi-rich phase which was precipitated at grain boundary. The addition of 5 wt% Bi markably enhanced anti-galling properties. The addition of Te caused Bi-rich precipitates to disperse finely and casting structure to form equiaxed type. From the above tests, the concentration of 5 wt% Bi and 1 wt% Te was selected to optimize in this alloy.