• 제목/요약/키워드: Taylor-series

검색결과 291건 처리시간 0.025초

불연속구조물의 배치최적설계를 위한 이점역이차근사법의 개발 (A Development of Two-Point Reciprocal Quadratic Approximation Mehtod for Configuration Optimization of Discrete Structures)

  • 박영선;임재문;양철호;박경진
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3804-3821
    • /
    • 1996
  • The configuration optimization is a structural optimization method which includes the coordinates of a structure as well as the sectional properties in the design variable set. Effective reduction of the weight of discrete structures can be obrained by changing the geometry while satisfying stress, Ei;er bickling, displacement, and frequency constraints, etc. However, the nonlinearity due to the configuration variables may cause the difficulties of the convergence and expensive computational cost. An efficient approximation method for the configuration optimization has been developed to overcome the difficulties. The method approximates the constraint functions based onthe second-order Taylor series expansion with reciprocal design variables. The Hessian matrix is approzimated from the information on previous design points. The developed algotithms are coded and the examples are solved.

임의선형을 갖는 아치의 자유진동 (Free Vibration of Arbitrary Shaped Arches)

  • 이태은;신성철;이병구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.526-529
    • /
    • 2004
  • Arches are one of the most important basic structural units as well as the beams, columns and plates. Most complicated structures consist of only these basic units and therefore it is very attractive research subject to analysis both the static and dynamic behavior of such units including the arches. This study deals with the free vibration of arbitrary shaped arches. In order to obtain the exactly arch shape, which surveyed (x, y) of neutral axis of arbitrary shaped arches are compared to various shape of arch: circular, parabolic, sinusoidal, elliptic, spiral and cartenary. The differential equations governing free vibrations of arches are merely adopted in the open literature rather than deriving the equations in this study. The Taylor series method is used as the numerical differential scheme. The Runge-Kutta method and the Regula-Falsi method, respectively, are used to integrate the governing differential equations and to compute the natural frequencies It is expected that results obtained herein can be practically utilized in the fields of vibration control.

  • PDF

유전적 프로그래밍을 이용한 응답면의 모델링 II: 최적의 다항식 생성 (Response Surface Modeling by Genetic Programming II: Search for Optimal Polynomials)

  • 이욱;김남준
    • 정보기술응용연구
    • /
    • 제3권3호
    • /
    • pp.25-40
    • /
    • 2001
  • 본 논문에서는 유전적 프로그래밍(Genetic Programing)을 이용하여 최적의 다항식을 생성하는 기법을 제시하고자 한다. 다항식은 비선형성이 큰 응답면을 모델링해야 하며, 이를 위하여 GP 트리 생성시 2-3차 오더의 Taylor Series를 사용하는 방법을 시도하였다. 아울러 생서되는 다항식의 크기를 제어하기 위해서 GP 트리가 표현할 수 있는 다항식의 최대 차수를 제한함과 동시에 하나의 주 트리와 보 트리로 구성되는 GAGPT(Group of Additive Genetic Programming Trees) 사용을 모색하였다. 마지막으로 두 개의 응용 예를 통하여 본 방법의 유용성을 검증하였다.

  • PDF

Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems

  • Taylor, Stuart G.;Farinholt, Kevin M.;Park, Gyuhae;Todd, Michael D.;Farrar, Charles R.
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.661-673
    • /
    • 2010
  • This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, $\underline{W}$ireless $\underline{I}$mpedance $\underline{D}$evice) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< ~1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented.

Scattering analysis of curved FSS using Floquet harmonics and asymptotic waveform evaluation technique

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Chun, Heoung-Jae;Park, Yong Bae;Kim, Youn-Jae;Yook, Jong-Gwan
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.561-572
    • /
    • 2014
  • In this paper, we present the scattering characteristics of infinite and finite array using method of moment (MoM) with Floquet harmonics and asymptotic waveform evaluation (AWE) technique. First, infinite cylindrical dipole array is analyzed using the MoM with entire domain basis function and cylindrical Floquet harmonics. To provide the validity of results, we fabricated the cylindrical dipole array and measured the transmission characteristics. The results show good agreements. Second, we analyzed the scattering characteristics of finite array. A large simulation time is needed to obtain the scattering characteristics of finite array over wide frequency range because Floquet harmonics can't be applied. So, we used the MoM with AWE technique using Taylor series and Pade approximation to overcome the shortcomings of conventional MoM. We calculated the radar cross section (RCS) as scattering characteristics using the proposed method in this paper and the conventional MoM for finite planar slot array, finite spherical slot array, and finite cylindrical dipole array, respectively. The compared results agree well and show that the proposed method in this paper is good for electromagnetic analysis of finite FSS.

조선분야의 축적된 데이터 활용을 위한 유전적프로그래밍에서의 선형(Linear) 모델 개발 (Implementing Linear Models in Genetic Programming to Utilize Accumulated Data in Shipbuilding)

  • 이경호;연윤석;양영순
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.534-541
    • /
    • 2005
  • Until now, Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how in its own. It is very useful to extract knowledge or information from the accumulated existing data by using data mining technique This paper treats an evolutionary computation based on genetic programming (GP), which can be one of the components to realize data mining. The paper deals with linear models of GP for the regression or approximation problem when given learning samples are not sufficient. The linear model, which is a function of unknown parameters, is built through extracting all possible base functions from the standard GP tree by utilizing the symbolic processing algorithm. In addition to a standard linear model consisting of mathematic functions, one variant form of a linear model, which can be built using low order Taylor series and can be converted into the standard form of a polynomial, is considered in this paper. The suggested model can be utilized as a designing tool to predict design parameters with small accumulated data.

Radiation testing of low cost, commercial off the shelf microcontroller board

  • Fried, Tomas;Di Buono, Antonio;Cheneler, David;Cockbain, Neil;Dodds, Jonathan M.;Green, Peter R.;Lennox, Barry;Taylor, C. James;Monk, Stephen D.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3335-3343
    • /
    • 2021
  • The impact of gamma radiation on a commercial off the shelf microcontroller board has been investigated. Three different tests have been performed to ascertain the radiation tolerance of the device from a nuclear decommissioning deployment perspective. The first test analyses the effect of radiation on the output voltage of the on-board voltage regulator during irradiation. The second test evaluated the effect of gamma radiation on the voltage characteristics of analogue and digital inputs and outputs. The final test analyses the functionality of the microcontroller when using an external, shielded voltage regulator instead of the on-board voltage regulator. The results suggest that a series of latch-ups occurs in the microcontroller during irradiation, causing increased current drain which can damage the voltage regulator if it does not have short-circuit protection. The analogue to digital conversion functionality appears to be more sensitive to gamma radiation than digital and analogue output functionality. Using an external, shielded voltage regulator can prove beneficial when used for certain applications. The collected data suggests that detaching the voltage regulator can extend the lifespan of the platform up to approximately 350 Gy.

Bending analysis of doubly curved FGM sandwich rhombic conoids

  • Ansari, Md I.;Kumar, Ajay;Bandyopadhyaya, Ranja
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.469-483
    • /
    • 2019
  • In this paper, an improved mathematical model is presented for the bending analysis of doubly curved functionally graded material (FGM) sandwich rhombic conoids. The mathematical model includes expansion of Taylor's series up to the third degree in thickness coordinate and normal curvatures in in-plane displacement fields. The condition of zero-transverse shear strain at upper and lower surface of rhombic conoids is implemented in the present model. The newly introduced feature in the present mathematical model is the simultaneous inclusion of normal curvatures in deformation field and twist curvature in strain-displacement equations. This unique introduction permits the new 2D mathematical model to solve problems of moderately thick and deep doubly curved FGM sandwich rhombic conoids. The distinguishing feature of present shell from the other shells is that maximum transverse deflection does not occur at its center. The proposed new mathematical model is implemented in finite element code written in FORTRAN. The obtained numerical results are compared with the results available in the literature. Once validated, the current model was employed to solve numerous bending problems by varying different parameters like volume fraction indices, skew angles, boundary conditions, thickness scheme, and several geometric parameters.

EXPONENTIALLY FITTED NUMERICAL SCHEME FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS INVOLVING SMALL DELAYS

  • ANGASU, MERGA AMARA;DURESSA, GEMECHIS FILE;WOLDAREGAY, MESFIN MEKURIA
    • Journal of applied mathematics & informatics
    • /
    • 제39권3_4호
    • /
    • pp.419-435
    • /
    • 2021
  • This paper deals with numerical treatment of singularly perturbed differential equations involving small delays. The highest order derivative in the equation is multiplied by a perturbation parameter 𝜀 taking arbitrary values in the interval (0, 1]. For small 𝜀, the problem involves a boundary layer of width O(𝜀), where the solution changes by a finite value, while its derivative grows unboundedly as 𝜀 tends to zero. The considered problem contains delay on the convection and reaction terms. The terms with the delays are approximated using Taylor series approximations resulting to asymptotically equivalent singularly perturbed BVPs. Inducing exponential fitting factor for the term containing the singular perturbation parameter and using central finite difference for the derivative terms, numerical scheme is developed. The stability and uniform convergence of difference schemes are studied. Using a priori estimates we show the convergence of the scheme in maximum norm. The scheme converges with second order of convergence for the case 𝜀 = O(N-1) and for the case 𝜀 ≪ N-1, the scheme converge uniformly with first order of convergence, where N is number of mesh intervals in the domain discretization. We compare the accuracy of the developed scheme with the results in the literature. It is found that the proposed scheme gives accurate result than the one in the literatures.

위성 탑재 영상레이다 첩 신호의 전치왜곡 보상을 위한 포락선 샘플링 및 보간 필터 기반의 설계 기법 (A Design Method for Pre-Distortion Compensation of SAR Chirp Signal based on Envelop Sampling and Interpolation Filter)

  • 이영복
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.347-354
    • /
    • 2022
  • The synthetic aperture radar(SAR) is an equipment that can acquire images in all weathers day and night based on radar signals. The on-board processor of satellite SAR generates transmission signal by digital signal processing, converts it into an analog signal and transmits to antenna. Until the transmission signal generated by on-board processor is output, the signal passes the transmission cables and analog devices. At this time, these hardware distort the signal and makes SAR performance worse. To improve the performance, pre-distortion technique is used. But, general pre-distortion using taylor series is not sufficient to compensate for the distortion. This paper suggests transmit signal design method with improved pre-distortion. This paper uses envelop sampling method and interpolation filter for frequency domain compensation. The proposed method accurately compensates the hardware distortion and reduces resource usage of FPGA. To analyze proposed method's performance, IRF characteristics are compared when the proposed method applies to signal with errors.