• Title/Summary/Keyword: Taylor-Couette유동

Search Result 16, Processing Time 0.023 seconds

Numerical Study of Taylor-Couette Flow with an Axial Flow (축방향 유동이 있는 Taylor-Couette 유동에 대한 전산 해석)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.444-449
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11 (12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

  • PDF

Numerical Study of Wavy Taylor-Couette Flow (II) -With an Axial Flow- (Wavy Taylor-Couette 유동에 대한 전산해석 (II) -축방향 유동이 있는 경우-)

  • Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.705-712
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. The case without the axial flow was investigated in the preceding paper. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11(12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

Chaos의 세계(II)

  • 서용권
    • Journal of the KSME
    • /
    • v.31 no.1
    • /
    • pp.68-79
    • /
    • 1991
  • 이 글에서는 다음의 내용에 대하여 알아보았다. Duffing - holmes 방정식에서의 Chaos Logistic map에서의 Chaos 기타 시스템에서의 Chaos 1) Henon map 2) Bouncty bau map (standard map) 3) 진자에서의 Chaos 4) Taylor-Couette유동 5) Fluid drop Chaos 6) Surface wave Chaos Lyapunov 지수 (Exponent)

  • PDF

Three-dimensional Fluid Flow Analysis in Taylor Reactor Using Computational Fluid Dynamics (CFD를 이용한 테일러 반응기의 3차원 유동해석)

  • Kwon, Seong Ye;Lee, Seung-Ho;Jeon, Dong Hyup
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.448-453
    • /
    • 2017
  • We conducted the three-dimensional fluid flow analysis in a Taylor reactor using computational fluid dynamics (CFD). The Taylor flow can be categorized into five regions according to Reynolds number, i.e., circular Couette flow (CCF), Taylor vortex flow (TVF), wavy vortex flow (WVF), modulated wavy vortex flow (MWVF), and turbulent Taylor vortex flow (TTVF), and we investigated the flow characteristics at each region. For each region, the shape, number and length of vortices were different and they influenced on the bypass flow. As a result, the Taylor vortex was found at TVF, WVF, MWVF and TTVF regions. The highest number of Taylor vortex was observed at TVF region, while the lowest at TTVF region. The numerical model was validated by comparing with the experimental data and the simulation results were in good agreement with the experimental data.

Turbulent Couette Flow between Coaxial Cylinders with Inner Cylinder Rotating (내측원관이 회전하는 동심이중원관 사이의 난류 쿠에트 유동에 관한 연구)

  • 김광용;김진욱;조용철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.540-546
    • /
    • 1992
  • Turbulent Couette flow between coaxial cylinders with inner one rotating has been investigated experimentally and numerically. The radius ratio of the coaxial cylinders is 0.43. Mean velocity and turbulent stresses have been measured by hot-wire anemometer in the range of Reynolds number based on the velocity at rotating wall and the radial distance between walls, 60,900-187,000. For the numerical computation, the Reynolds stress model has been used as a turbulence closure model. Measurements of mean velocity show that the velocity profile of wall layer largely deviates from universal logarithmic law due to the effect of streamline curvature, especially in the region near the stationary outer cylinder. The results computed with the Reynolds stress model agree well with the experimental data in the prediction of circumferential intensity of turbulent fluctuations. However, the computed level of radial intensity is much higher than the measurement. Curvature-corrected versions of the Reynolds stress model improves the prediction of turbulent intensities, but the results are not fully satisfactory.

An Efficient Fluid-Thermal Integrated Analysis for Air-Intake Structure Design of a High Speed Air Vehicle (고속 비행체 공기흡입관 구조설계를 위한 효율적 유체-열 통합해석 연구)

  • Chun, Hyung-Geun;Ryu, Dong-Guk;Lee, Jae-Woo;Kim, Sang-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.8-17
    • /
    • 2015
  • In this research, low fidelity air/heat load analysis was conducted for the intake of high speed vehicle. For air/heat load calculations, aerodynamic properties at the surface and the boundary layer edge were estimated using Taylor-Maccoll equation for conical flow, shockwave relation and Prandtl-Meyer expansion equation for internal and external flow. Couette flow assumption and Reynolds analogy were used in order to calculate convective heat transfer coefficient. In order to calculate skin friction coefficient for heat transfer coefficient analysis, Van Driest method II and Reference Enthalpy method were considered. An axis symmetric SCRAMJET model was selected as a reference configuration for verifying the proper implementation of the present method. Comparison of the results using the present method and Computational Fluid Dynamic analysis showed that the present method is valuable for efficiently providing pressure and heat loads for air-intake structure design of the high speed air vehicle.