• Title/Summary/Keyword: Taylor Linearized Model

Search Result 19, Processing Time 0.021 seconds

The Analysis of Two-phase Flow in a Lean Direct Injection Gas-turbine Combustor (희박연료 직접분사(Lean Direct Injection) 가스터빈 연소기의 이상유동 분석)

  • Lee, Kyobin;Kim, Jong-Chan;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The analysis on two-phase flow in a Lean Direct Injection(LDI) combustor has been investigated. Linearized Instability Sheet Atomization(LISA) and Aerodynamically Progressed Taylor Analogy Breakup(APTAB) breakup models are applied to simulate the droplet breakup process in hollow-cone spray. Breakup model is validated by comparing penetration length and Sauter Mean Diameter(SMD) of the experiment and simulation. In the LDI combustor, Precessing Vortex Core(PVC) is developed by swirling flow and most droplets are atomized along the PVC. It has been confirmed that all droplets have Stokes number less than 1.0.

Design of Torque Servo for Impedance Control of Double Vane Rotary Hydraulic Actuator System (더블 베인 회전형 유압 구동시스템의 임피던스 제어를 위한 토크 서보 설계)

  • Kim, Seon-Min;Choi, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.160-168
    • /
    • 2010
  • In order to achieve a force controller with high performance, an accurate torque servo is required. However, the precise torque servo for a double vane rotary actuator system has not been developed till now, due to many nonlinear characteristics and system parameter variations. In this paper, the torque servo structure for the double vane rotary actuator system is proposed based on the torque model. Nonlinear equations are set up using dynamics of the double vane rotary hydraulic actuator system. Then, to derive the torque model, the nonlinear equations are linearized using a taylor series expansion. Both effectiveness and performance of the design of torque servo are verified by torque servo experiments and applying the suggested torque model to an impedance controller.

A Study on Atomization and Wall Impingement Process of Hollow-Cone Fuel Spray (중공 원추형 연료 분무의 미립화 및 벽 충돌 과정에 대한 연구)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.132-138
    • /
    • 2006
  • Numerical analysis about atomization and wall impingement process of hollow-cone fuel spray is performed by a modified KIVA code with hybrid model. The atomization process is modeled by using hybrid breakup model that is composed of Linearized Instability Sheet Atomization(LISA) model and Aerodynamically Progressed Taylor Analogy Breakup(APTAB) model. The Gosman model, which is based on the droplet behaviors after impingement determined by experimental correlations, is used for spray-wall impingement process. The LIEF technique was used to compare the results with those of experiment. The calculations and experiments are carried out at the ambient pressures of 0.1 MPa and 0.5 MPa and the ambient temperature of 293K. It was found that the calculated results show satisfactory agreement with experimental ones.

Numerical Study on Wall Impingement Process of GDI Spray According to Wall Cavity Angle (벽면 캐비티 각에 따른 GDI 분무의 벽 충돌 과정에 대한 수치적 연구)

  • Shim, Young-Sam;Kim, Duck-Jool;Choi, Gyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.971-978
    • /
    • 2007
  • A spray-wall impingement process of a hollow-cone fuel spray from the high-pressure swirl injector in the Gasoline Direct Injection (GDI) engine were experimented and calculated at various wall geometries. The Linearized Instability Sheet Atomization (LISA) & the Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model and the Gosman model were applied to model the breakup and the wall impingement process of the hollow-cone fuel spray. The numerical modelings were implemented in the modified KIVA code. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental results by the Laser Induced Exciplex Fluorescence (LIEF) technique. The droplet size distribution and the ambient gas velocity field, which are generally difficult to obtain by the experimental methods, were also calculated and discussed. It was found that the radial distance after wall impingement and Sauter Mean Diameter (SMD) decreased with increasing a cavity angle.

Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills (열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어)

  • Hwang, I.C.;Park, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

Development of a Ship Calculation Program Based On the Geometric Model (형상모델 기반 선박계산 전산프로그램 개발)

  • Sang-Su Park;Kyu-Yeul Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.121-134
    • /
    • 1999
  • In this paper, a ship calculation program is developed, which prof[nuts hydrostatics and volume calculation intact and damage stability and hull variation. Hull form and compartment geometry are expressed with NURBS curve wire-frame model. Hydrostatics and volume calculation are performed directly with the intersection method between section geometry and 3D planar surface. Equilibrium ship position is calculated with hydrostatic equilibrium equation which is linearized by 1st order Taylor series expansion sequentially. The developed program shows more accurate results and easy uses than the latter.

  • PDF

Design of an LMI- Based H^{\infty} Servo Controller for Tandem Cold Mill (LMI 에 기초한 연속 냉간압연기의 H^{\infty} 서보 제어기 설계)

  • Kim, In-Soo;Hwang, I-Cheol;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2000
  • In this paper, we design a H^\infty servo controller for gauge control of tandem cold mill. To improve the performance of the AGC(Aotomatic Gauge Control) system based on the Taylor linearized model of tandem cold mill, the H^\infty servo controller is designed to satisfy robust stability, disturbance attenuation and robust tracking properties. The H^\infty servo controller problem is modified as an usual H^\infty control problem, and the solvability condition of the H^\infty servo problem depends on the solvability of the modified H^\infty control problem. Since this modified problem does not satisfied standard assumptions for the H^\infty control problem, it is solved by an LMI(Linear Matrix Inequality) technique. Consequently, the comparison between the H^\infty servo controller and the existing PID/FF(FeedForward) controller shows the usefulness of this study.

  • PDF

Development of Optimization Model for Long-term Operation Planning of the Hydropower Reservoirs in Han River Basin (한강수계 발전용댐 장기 운영계획 수립을 위한 최적화 모형 구축)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.69-79
    • /
    • 2019
  • In Korea, more than 60% of the whole lands are mountainous area. Since many decades ago, hydroelectric power plants have been constructed and eco-friendly energy has been produced. Hydropower can cope with the rapidly changing energy supply and demand, and produce eco-friendly energy. However, when the reservoir is built, it is often inevitable to damage the environment due to construction of large structure. In this study, the optimal reservoir operation model was developed to maximize power generation by monthly operation for long-term operation planning. The dam operation model was developed using the linear programming which is widely used in the optimal resources allocation problems. And the reservoir operation model can establish monthly operation plan for 1 year. Linear programming requires both object function and constraints to be linear. However, since the power generation equation is nonlinear, it is linearized using the Taylor Expansion technique. The optimization results were compared with the 2009-2018 historical data of five hydropower reservoirs. As a result, the total optimal generation is about 10~37% higher than the historical generation.

Modeling and State Observer Design for Roll Slip in Cold Cluster Mills (냉간압연 다단 압연기의 롤 슬립 모델링 및 상태 관측기 설계)

  • Kang, Hyun Seok;Hong, Wan Kee;Hwang, I Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1543-1549
    • /
    • 2012
  • This study focuses on the state space model and the design of a state observer for the slip dynamics between rolls in STS cold cluster mills. First, a mathematical model of the roll slip is given as a nonlinear differential equation. Then, by using a Taylor series expansion, it is linearized as a state space model. Next, by using Gopinath's algorithm, a minimal-order state observer based on the state space model is designed to estimate the angular speed of all idle rolls except for an actuated roll that is measureable. Finally, a computer simulation is used to validate that the proposed state space model very well describes slip dynamics between, and moreover, the state observer very well estimates the angular speed of the idle roll.