• Title/Summary/Keyword: Task recommendation

Search Result 82, Processing Time 0.021 seconds

Bayesian Approach to Users' Perspective on Movie Genres

  • Lenskiy, Artem A.;Makita, Eric
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Movie ratings are crucial for recommendation engines that track the behavior of all users and utilize the information to suggest items the users might like. It is intuitively appealing that information about the viewing preferences in terms of movie genres is sufficient for predicting a genre of an unlabeled movie. In order to predict movie genres, we treat ratings as a feature vector, apply a Bernoulli event model to estimate the likelihood of a movie being assigned a certain genre, and evaluate the posterior probability of the genre of a given movie by using the Bayes rule. The goal of the proposed technique is to efficiently use movie ratings for the task of predicting movie genres. In our approach, we attempted to answer the question: "Given the set of users who watched a movie, is it possible to predict the genre of a movie on the basis of its ratings?" The simulation results with MovieLens 1M data demonstrated the efficiency and accuracy of the proposed technique, achieving an 83.8% prediction rate for exact prediction and 84.8% when including correlated genres.

Community based strategies and directions for the management of hypertension and diabetes (고혈압 및 당뇨병 관리를 위한 지역사회중심의 접근전략과 발전방향)

  • Lee, Soon Young
    • Korean Journal of Health Education and Promotion
    • /
    • v.33 no.4
    • /
    • pp.67-77
    • /
    • 2016
  • Objectives: The study was to propose strategies and directions how to manage the hypertension and diabetes in communities. Methods: The survey data from 606 patients with hypertension or diabetes based on Community Health Survey, 2013 were analyzed and the hypertension and diabetes projects in communities for last 10 years were reviewed. Results: The patients visiting the primary clinics had statistically significant lower rates than those of teaching hospitals in physician's recommendation experience, perception level of attention from doctors, self-efficacy and health habit practice level. Since the Hypertension and diabetes registration and management system in 2007, there have been several trials for management of hypertension and diabetes such as Chronic diseases management system on the primary clinics, Community based primary medical care pilot projects, Post-national health screening management, and Pilot project on reimbursement for chronic diseases care services. Conclusions: The upmost urgent task might be to have a support system for patients' self care affiliated with primary clinics. To achieve it, it is necessary to expand the current Hypertension and diabetes registration and management system into nation and to find a way to attract the active participation from primary clinics.

The Effect of Science Museum Educational Program on Primary School Students' Science Learning Motivation (과학관 교육 프로그램이 초등학생들의 과학 학습 동기에 미치는 영향)

  • Lee, Sun-Kyun;Shin, Hyeon-Jeong;Myeong, Jeon-Ok;Kim, Chan-Jong
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.1
    • /
    • pp.47-55
    • /
    • 2010
  • This study was to examine science learning motivation of primary students participating in science museum educational programs. The subject was 36 primary students in the programs in a science museum during a month. The questionnaire for this study consisted of items developed by us and some items from Motivated Strategies for Learning Questionnaire developed by Pintrich et al.(2001). The results included primary students' motivation of joining the programs in a science museum, their perceptions about the programs, and the effects of the programs on their science learning motivation. It seemed that the students had the opportunities of doing science activities in the museum on the recommendation of their family or teachers, especially their parents. And they were motivated to participate the programs with interests of science and they were interested in the activities in the programs. The statistics showed that the program have an positive effects on the students' self efficacies and values on science tasks. Based on this results, discussion and implications were presented.

  • PDF

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF

Multi-day Trip Planning System with Collaborative Recommendation (협업적 추천 기반의 여행 계획 시스템)

  • Aprilia, Priska;Oh, Kyeong-Jin;Hong, Myung-Duk;Ga, Myeong-Hyeon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.159-185
    • /
    • 2016
  • Planning a multi-day trip is a complex, yet time-consuming task. It usually starts with selecting a list of points of interest (POIs) worth visiting and then arranging them into an itinerary, taking into consideration various constraints and preferences. When choosing POIs to visit, one might ask friends to suggest them, search for information on the Web, or seek advice from travel agents; however, those options have their limitations. First, the knowledge of friends is limited to the places they have visited. Second, the tourism information on the internet may be vast, but at the same time, might cause one to invest a lot of time reading and filtering the information. Lastly, travel agents might be biased towards providers of certain travel products when suggesting itineraries. In recent years, many researchers have tried to deal with the huge amount of tourism information available on the internet. They explored the wisdom of the crowd through overwhelming images shared by people on social media sites. Furthermore, trip planning problems are usually formulated as 'Tourist Trip Design Problems', and are solved using various search algorithms with heuristics. Various recommendation systems with various techniques have been set up to cope with the overwhelming tourism information available on the internet. Prediction models of recommendation systems are typically built using a large dataset. However, sometimes such a dataset is not always available. For other models, especially those that require input from people, human computation has emerged as a powerful and inexpensive approach. This study proposes CYTRIP (Crowdsource Your TRIP), a multi-day trip itinerary planning system that draws on the collective intelligence of contributors in recommending POIs. In order to enable the crowd to collaboratively recommend POIs to users, CYTRIP provides a shared workspace. In the shared workspace, the crowd can recommend as many POIs to as many requesters as they can, and they can also vote on the POIs recommended by other people when they find them interesting. In CYTRIP, anyone can make a contribution by recommending POIs to requesters based on requesters' specified preferences. CYTRIP takes input on the recommended POIs to build a multi-day trip itinerary taking into account the user's preferences, the various time constraints, and the locations. The input then becomes a multi-day trip planning problem that is formulated in Planning Domain Definition Language 3 (PDDL3). A sequence of actions formulated in a domain file is used to achieve the goals in the planning problem, which are the recommended POIs to be visited. The multi-day trip planning problem is a highly constrained problem. Sometimes, it is not feasible to visit all the recommended POIs with the limited resources available, such as the time the user can spend. In order to cope with an unachievable goal that can result in no solution for the other goals, CYTRIP selects a set of feasible POIs prior to the planning process. The planning problem is created for the selected POIs and fed into the planner. The solution returned by the planner is then parsed into a multi-day trip itinerary and displayed to the user on a map. The proposed system is implemented as a web-based application built using PHP on a CodeIgniter Web Framework. In order to evaluate the proposed system, an online experiment was conducted. From the online experiment, results show that with the help of the contributors, CYTRIP can plan and generate a multi-day trip itinerary that is tailored to the users' preferences and bound by their constraints, such as location or time constraints. The contributors also find that CYTRIP is a useful tool for collecting POIs from the crowd and planning a multi-day trip.

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

Clustering Analysis by Customer Feature based on SOM for Predicting Purchase Pattern in Recommendation System (추천시스템에서 구매 패턴 예측을 위한 SOM기반 고객 특성에 의한 군집 분석)

  • Cho, Young Sung;Moon, Song Chul;Ryu, Keun Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • Due to the advent of ubiquitous computing environment, it is becoming a part of our common life style. And tremendous information is cumulated rapidly. In these trends, it is becoming a very important technology to find out exact information in a large data to present users. Collaborative filtering is the method based on other users' preferences, can not only reflect exact attributes of user but also still has the problem of sparsity and scalability, though it has been practically used to improve these defects. In this paper, we propose clustering method by user's features based on SOM for predicting purchase pattern in u-Commerce. it is necessary for us to make the cluster with similarity by user's features to be able to reflect attributes of the customer information in order to find the items with same propensity in the cluster rapidly. The proposed makes the task of clustering to apply the variable of featured vector for the user's information and RFM factors based on purchase history data. To verify improved performance of proposing system, we make experiments with dataset collected in a cosmetic internet shopping mall.

Development of Personalized Recommendation System using RFM method and k-means Clustering (RFM기법과 k-means 기법을 이용한 개인화 추천시스템의 개발)

  • Cho, Young-Sung;Gu, Mi-Sug;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.163-172
    • /
    • 2012
  • Collaborative filtering which is used explicit method in a existing recommedation system, can not only reflect exact attributes of item but also still has the problem of sparsity and scalability, though it has been practically used to improve these defects. This paper proposes the personalized recommendation system using RFM method and k-means clustering in u-commerce which is required by real time accessablity and agility. In this paper, using a implicit method which is is not used complicated query processing of the request and the response for rating, it is necessary for us to keep the analysis of RFM method and k-means clustering to be able to reflect attributes of the item in order to find the items with high purchasablity. The proposed makes the task of clustering to apply the variable of featured vector for the customer's information and calculating of the preference by each item category based on purchase history data, is able to recommend the items with efficiency. To estimate the performance, the proposed system is compared with existing system. As a result, it can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic internet shopping mall.

A Recommendation based Role-Assignment Method by Adapting Dynamic Weight Changing (동적 가중치 변화를 통한 추천 기반의 역할 할당 기법)

  • Lee, Keon-Soo;Rho, Seung-Min;Kim, Min-Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.124-129
    • /
    • 2011
  • In the process of cooperation which can be the best proposals for resolving complex problems in computing domain, the way of team organizing is one of the most important aspects for succeeding the goal. Especially in ubiquitous computing environment, where the participants of a team are selected from the heterogeneous computing objects which are deployed by other providers for their own goals, finding the relevant teammate can be regarded as the most important factor for determining the success or failure of the given problem. In this paper, we propose a method of finding teammate and assigning a role, which is a sub task of cooperation, by comparing the attributes of the computing object and the requirement of the role such as capability of functions, loyalty for the given team, and harmony with other teammates. By considering the situationally changing weights of each attributes, this method can be suited for dynamic computing environment where the cooperation should be executed with dynamically in/out computing objects and satisfy the dynamically chaining constraints.