• Title/Summary/Keyword: Task fMRI

Search Result 92, Processing Time 0.023 seconds

A Study on Visuospatial Cognitive Performance Following Oxygen Administration using fMRI (뇌기능 영상을 이용한 외부 산소 공급에 따른 공간 지각 능력 변화에 관한 연구)

  • 정순철;김익현;이봉수;이정미;손진훈;김승철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.267-273
    • /
    • 2003
  • The present study attempted to observe what changes the supply of highly concentrated (30%) oxygen cause to people's ability of visuospatial cognition, compared to air of normal oxygen concentration (21%). This study sampled eight male university students (the average age : 23.5) as subjects for functional Magnetic Resonance Imaging (MRI) study It also developed equipment that supplies 21% and 30% oxygen) at a constant rate of 8L/min. Two questionnaires containing 20 questions were developed to measure the ability of visuospatial cognition, and accuracy was calculated from the result of task performance. The experiment paradigm consisted of the run conducting tasks at 30%'s concentration of oxygen and another run at 21%'s concentration of oxygen. Each run was composed of four blocks and each block included eight control tasks and five visuospatial taks. 3T MRI was used and fMRI was obtained through the single-shot EPI method. The activation in the occipital-associated area, bilateral superior parietal lobes, bilateral inferior parietal lobes. bilateral precuneus, bilateral postcentral gyri, bilateral middle frontal gyri, bilateral inferior frontal gyri, bilateral medial frontal gyri, bilateral superior frontal gyri, bilateral cingulate gyri was significantly increased at the 30%'s concentration of oxygen rather than 21%'s. Furthermore, the result of task performance showed the accuracy increased at 30%'s concentration of oxygen rather than 21%'s. From the result of this study, it is concluded that the supply of highly concentrated oxygen has a positive effect on the ability of visuospatial cognition.

Analysis on the Degree of Cerebral Activity According to Cognition Task in Welders Exposed to Manganese (망간 노출 용접공의 인지수행에 따른 뇌 활성화 정도 분석)

  • Choi, Jae-Ho
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.17-25
    • /
    • 2011
  • In this study, we examined the impact caused by chronic exposure to Mn by investigating the degree of brain activation based on the data of recognition activities using fMRI (functional magnetic resonance imaging). A questionnaire survey, blood tests, and fMRI tests were carried out with respect to two groups. Group 1 was an exposure group consisting of 15 male workers who are 34 years old or older, and who worked for longer than 10 years in a shipbuilding factory as a welder. Group 2 was a control group consisting of 15 workers in manufacturing industries with the same gender and age. The results showed that blood Mn concentration of Group 1($1.3\;{\mu}g/dl$) was significantly higher than that of Group 2($0.8\;{\mu}g/dl$)(p < 0.001), and Pallidal Index (PI) of Group 1 was also significantly higher than that of Group 2 (p < 0.001). PI value of the group whose blood Mn concentration was $0.93\;{\mu}g/dl$ or higher was significantly higher than that of the group whose blood Mn concentration was less than $0.93 \;{\mu}g/dl$ (p < 0.001). As for brain activity area within the control group, the right and the left areas of occipital cortex showed significant activity and the left area of middle temporal cortex, the right area of superior inferior frontal cortex and inferior parietal cortex showed significant activity. Unlike the control group, the exposure group showed significant activity on the right area of superior inferior temporal cortex, the left of insula area. In the comparison of brain activity areas between the two groups, the exposure group showed significantly higher activation than the control group in such areas as the right inferior temporal cortex, the left area of superior parietal cortex and occipital cortex, and cerebellum including middle temporal cortex. However, in nowhere the control group showed more activated area than the exposure group. As the final outcome, chronic exposure to Mn increased brain activity during implementation of arithmetic task. In an identical task, activation increased in superior inferior temporal cortex, and insula area. And it was discovered that brain activity increase in temporal area and occipital area was more pronounced in the exposure group than in the control group. This result suggests that chronic exposure to Mn in the work environment affects brain activation neuro-network.

Cerebellar Activation Related to Various Tasks Using fMRI (다양한 임무 부여시 기능적 자기공명영상에서 관찰된 소뇌의 활성화)

  • Hwang, Seung-Bae;Kwak, Hyo-Sung;Lee, Sang-Yong;Jin, Gong-Yong;Han, Young-Min;Kim, Young-Kon;Chung, Gyung-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Purpose : Although it's been known for half a century that unique structures have evolved in the cerebellum and they then became greatly enlarged in the human brain, the function of these structures still remains unknown. The purpose of this study was to assess cerebellar activation during motor, sensory, word generation, listening comprehension, and working memory tasks with using functional magnetic resonance imaging (fMRI). Materials and Methods : Eleven healthy right-handed subjects (Male: female, 6:5, mean age: 27.4years) were imaged on a Siemens 1.5T scanner. Whole brain functional maps were acquired using BOLD EPI sequences in the axial plane. Each paradigm consisted of five epochs of activation vs. the control condition. The activation tasks consisted of left finger complex movement, sensory stimulation of the left hand, word generation, listening comprehension, and working memory tasks. The reference function was a boxcar waveform. The activation maps were thresholded at p = 0.001. SPM 5 evaluated the activated areas and responses within the cerebellum. Results : Cerebellar activation was observed on motor task, word generation task, and working memory task. There were 949 activated areas and the mean fitted and adjusted response was 0.68 during the motor task. There were 319 activated areas and the mean fitted and adjusted response was 0.15 during the word generation task. There were 330 activated areas and the mean fitted and adjusted response was 0.26 during the working memory task. Conclusion : Our results suggest that the cerebellum is involved in a variety of functional tasks, including motor, word generation, and working memory tasks. However, during the motor task, the cerebellum showed a large activated area and a high response. Cerebellar function can be evaluated by fMRI.

  • PDF

Correlation between Cognitive Performance Ability, Neural Activation Area and Neural Activation Intensity in fMRI (뇌기능 영상에서 인지 수행 능력, 신경 활성화 면적 신경 활성화 크기의 상관관계)

  • Sohn Jin Hun;Oh Chong Hyun;Tack Gye Rae;Yi Jeong Han;Lee Soo Yeol;Chung Soon Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.200-207
    • /
    • 2005
  • This study compares two different methods of measuring brain-BOLD activation. By comparing two different methods of measurement i.e., one method calculating the neural activation area (the number of activated voxels), while the other measured the neural activation intensity (the mean intensity of selected activated yokels), this study identified the more precise method of measuring brain activation which results from the completion of a visuospatial task. 16 right-handed male college students (mean age 23.2 years) participated in this study as subjects. Functional brain images were scanned on them using a 3T MRI single-shot EPI method. No correlation was found between the levels of cognitive performance and number of activated yokels in the activated brain areas. However, a significant correlation was found between the levels of cognitive performance and the mean intensity of selected activated yokels in the parietal, frontal, and other areas. In conclusion, the method of mean intensity was considered a better index of brain activity rather than the activated yokels measurement method.

Functional MRI of Language Area (언어영역의 기능적 자기공명영상)

  • 유재욱;나동규;변홍식;노덕우;조재민;문찬홍;나덕렬;장기현
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.53-59
    • /
    • 1999
  • Purpose : To evaluate the usefulness of functional MR imaging (fMRI) for language mapping and determination of language lateralization. Materials and Methods : Functional maps of the language area were obtained during word generation tasks and decision task in ten volunteers (7 right handed, 3 left-handed). MR examinations were performed at 1.5T scanner with EPI BOLD technique. Each task consisted of three resting periods and two activation periods with each period of 30 seconds. Total acquisition time was 162 sec. SPM program was used for the postprocessing of images. Statistical comparisons were performed by using t-statistics on a pixel-by- pixel basis after global normalization by ANCOVA. Activation areas were topographically analyzed (p>0.001) and activated pixels in each hemisphere were compared quantitatively by lateralization index. Results : Significant activation signals were demonstrated in 9 of 10 volunteers. Activation signals were found in the premotor and motor cortices, the inferior frontal, inferior parietal, and mid-temporal lobes during stimulation tasks. In the right handed seven volunteers, activation of language areas was lateralized to the left side. Verb generation task produced stronger activation in the language areas and higher value of lateralization index than noun generation task or decision task. Conclusion : fMRI could be a useful non-invasive method for language mapping and determination of language dominance.

  • PDF

Activation of Limbic Area due to Oxygen Administration during Visuospatial Task (공간 과제 수행 시 고농도 산소 공급에 의한 변연계 활성화에 관한 연구)

  • Choi, Mi-Hyun;Lee, Su-Jeong;Yang, Jae-Woong;Kim, Ji-Hye;Choi, Jin-Seung;Tack, Gye-Rae;Chung, Soon-Cheol;Kim, Hyun-Jun
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • The purpose of this study is to observe activation of limbic system during performing visuospatial tasks by 21% and 30% oxygen administration. Eight right handed male college students were selected as the subjects for this study. A visuospatial task was presented while brain images were scanned by a 3T fMRI system. The experiment consisted of two runs: one was a visuospatial task under normal air(21% oxygen) condition and the other under hyperoxic air(30% oxygen) condition. The neural activations were observed at the limbic system which is seperated 8 regions such as cingulate gyrus, thalamus, limbic lobe, hypothalamus, hippocampus, parahippocampa gyrus, amygdala, and mammiilary body. By two oxygen levels, activation areas of limbic system are almost identical. Increased neural activations were observed in the cingulate gyrus and thalamus with 30% oxygen administration compared to 21% oxygen. During 30% oxygen administration, improvement of visuospatial task performance has a relation to increase of neural activation of subcortical structures such as thalamus and cingulate gyrus as well as cerebral cortex.

  • PDF

Internet Game Overuser and Disembodiment : Neural Correlates as Revealed by Functional Magnetic Resonance Imaging (인터넷 게임 과다사용자와 탈신체화 : 기능적 뇌자기공명영상을 이용한신경 상관물)

  • Oh, Jong-Hyun;Son, Jung-Woo;Kim, Ji-Eun;Shin, Yong-Wook
    • Korean Journal of Biological Psychiatry
    • /
    • v.21 no.2
    • /
    • pp.57-64
    • /
    • 2014
  • Objectives The purpose of this study was to investigate the difference of brain activity between internet game overusers in adulthood and normal adults in a state of disembodiment. Methods The fMRI images were taken while the internet game overuser group (n = 14) and the control group (n = 15) were asked to perform the task composed of ball-throwing animations. The task reflected on either self-agency about ball-throwing or location of a ball. And each block was shown with either different (changing viewpoint) or same animations (fixed viewpoint). The disembodiment-related condition was the interaction between agency task and changing viewpoint. Results 1) In within-group analyses, the control group exhibited higher brain activation in the left precentral gyrus, the left inferior frontal gyrus, and the left insula. And the overuser group exhibited higher activation in the right cuneus, the left posterior middle occipital gyrus, and the left parahippocampal gyrus. 2) In between-group analyses, the control group exhibited higher activation in the right posterior superior temporal gyrus. And the overuser group exhibited higher activation in the left cuneus, and the left posterior middle occipital area. Conclusions These results show that the disembodiment-related brain activation of internet game overusers in adulthood is different from that of normal adults.

Functional MR Imaging in the speech-control centers of the brain : Comparison study between Visual and Auditory Language instrument methods in Normal Volunteers (Auditory language task를 이용한 자기공명영상에 관한 고찰 : Visual language task와의 비교)

  • Goo Eun Hoe;Kim In Soo;Jeong Heon Jeong;You Byung Ki;Kim Dong Sung;Choi Cheon Kyu;Song In Chan
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.28 no.1
    • /
    • pp.161-166
    • /
    • 2002
  • Purpose: To make a comparison evaluated of the auditory instrument and visual instrument language generation task in the fMRI, on the adult volunteers. Materials and Methods: Total of 6 normal adult volunteers(men;4, women;2, mean age;24) performed in 1.5

  • PDF

A Computer-Aided Diagnosis of Brain Tumors Using a Fine-Tuned YOLO-based Model with Transfer Learning

  • Montalbo, Francis Jesmar P.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4816-4834
    • /
    • 2020
  • This paper proposes transfer learning and fine-tuning techniques for a deep learning model to detect three distinct brain tumors from Magnetic Resonance Imaging (MRI) scans. In this work, the recent YOLOv4 model trained using a collection of 3064 T1-weighted Contrast-Enhanced (CE)-MRI scans that were pre-processed and labeled for the task. This work trained with the partial 29-layer YOLOv4-Tiny and fine-tuned to work optimally and run efficiently in most platforms with reliable performance. With the help of transfer learning, the model had initial leverage to train faster with pre-trained weights from the COCO dataset, generating a robust set of features required for brain tumor detection. The results yielded the highest mean average precision of 93.14%, a 90.34% precision, 88.58% recall, and 89.45% F1-Score outperforming other previous versions of the YOLO detection models and other studies that used bounding box detections for the same task like Faster R-CNN. As concluded, the YOLOv4-Tiny can work efficiently to detect brain tumors automatically at a rapid phase with the help of proper fine-tuning and transfer learning. This work contributes mainly to assist medical experts in the diagnostic process of brain tumors.

A fMRI study on the cerebral activity induced by Electro-acupuncture on K7(Fuliu) (복류(復溜)(K7) 전침자극(電鍼刺戟)이 functional MRI상 뇌기능(腦機能) 변화(變化)에 미치는 영향(影響))

  • Kang, Jae-hui;Lee, Hyun;Lee, Byung-ryul;Hong, Kwon-eui;Yim, Yun-kyoung;Kim, Yun-jin
    • Journal of Acupuncture Research
    • /
    • v.20 no.4
    • /
    • pp.66-84
    • /
    • 2003
  • Objectve : Recent stuides suggested that there is a strong correlation between acupuncture stimulation and its cortical activation. Another study showed that either positive or negative BOLD effects could be observed depending on anatomical structure in acupuncture. Methods : 1) Subjects and paradigms: Two separate stimulation paradigms were performed in this study. To see the effects of electro-acupuncture stimulation on K7(Fuliu), the experiment was carried out on six healthy volunteers, using the gradient echo sequence with the 3.0T whole-body MRI system(ISOL). After the needle insertion on right K7(Fuliu), 2 Hz of electric stimulation was given for 30 seconds, repeated five times, with 30 seconds' intervals. During the intervals while there was no electro-stimulation, the subjects performed motor task as a reference. The image analysis including motion correction, talairach transformation, and smoothing was done using SPM99. Results: The electro-acupuncture stimulation on K7(Fuliu) activated Brodmann's Areas of 9, 19, 23, 24, 31, 32, 39 which may be the central pathways of the electro-acupuncture stimulation on K7(Fuliu) and those brain areas may be related with the function of the electro-acupuncture stimulation on K7(Fuliu).

  • PDF