• Title/Summary/Keyword: Task angle

Search Result 172, Processing Time 0.03 seconds

A Comparison of Muscle Activation and Mechanical Loading according to the Degree of Ankle Joint Motion during a Sit-to-stand Task (앉았다 일어서기 동작 수행 시 발목 관절 각도에 따른 근 활성도 및 역학적 부하량의 비교)

  • Lee, Myung-Mo;Park, Dae-Sung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.4
    • /
    • pp.113-122
    • /
    • 2017
  • PURPOSE: The purpose of this study was to investigate the comparison of muscle activity and mechanical loading according to the angle of ankle joint during a sit-to-stand (STS) task. METHODS: Thirty-four young participants performed the STS in a randomized trial with the ankle joint at a neutral, 15 degrees dorsiflexion and 15 degrees plantarflexion angle in a fixed sitting posture with the knee in 105 degrees flexion. Muscle activity of the tibialis anterior (TA), rectus femoris (RF), biceps femoris (BF), and gastrocnemius medialis (GCM) was measured, and the parameters calculated in relation to mechanical loading were the STS-time, maximum peak, minimum peak, and total sum of mechanical loading. RESULTS: In the dorsiflexion position, the muscle activity of the TA and GCM showed a significant increase (p<.05), and the STS time, maximum peak and total sum of mechanical loading showed a significant difference compared to that in the neutral position (p<.05). In the plantarflexion position, the muscle activity of the RF and GCM showed a significant increase (p<.05), while that of the TA showed a significant decrease (p<.05) compared to that in the neutral position. And the minimum peak was significantly increased than the neutral position (p<.05), and the maximum peak and total sum of mechanical loading were showed significant difference compared with dorsiflexion position (p<.05). CONCLUSION: These results show that there is a difference in muscle activity and mechanical loading when performing the STS movement according to the change in the ankle joint angle.

Comparison of Upper Extremity Muscle Activity With Transverse Plane Angle Changes During Vertical Keyboard Typing (타이핑 작업 시 수직형 키보드의 수평면 끼인각 변화에 따른 상지의 근활성도 비교)

  • Lee, Kang-Jin;Roh, Jung-Suk;Kim, Tack-Hoon;Cynn, Heon-Seock;Choi, Houng-Sik;Oh, Dong-Sik
    • Physical Therapy Korea
    • /
    • v.16 no.2
    • /
    • pp.67-76
    • /
    • 2009
  • In order to prevent upper extremity musculoskeletal disorders, effective keyboard selection is an important consideration. The aim of this study was to compare upper extremity muscle activity according to transverse plane angle changes during vertical keyboard typing. Sixteen healthy men were recruited. All subjects had a similar typing ability (rate of more than 300 keystrokes per minute) and biacromion and forearm-fingertip lengths. Four different types of keyboard (vertical keyboard with a transverse plane angle of $60^{\circ}$, $96^{\circ}$, or $120^{\circ}$, and a standard keyboard) were used with a wrist support. The test order was selected randomly for each subject. Surface electromyography (EMG) was used to measure upper extremity muscle activity during a keyboard typing task. The collected EMG data were normalized using the reference contraction and expressed as a percentage of the reference voluntary contraction (%RVC). In order to analyze the differences in EMG data, a repeated one-way analysis of variance, with a significance level of .05, was used. Bonferroni correction was used for multiple comparisons. There were significant differences in the EMG amplitude of all seven muscles (upper trapezius, middle deltoid, anterior deltoid, extensor carpi radialis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris) assessed during the keyboard typing task. The mean activity of each muscle had a tendency to increase as the transverse plane angle increased. The mean activity recorded during all vertical keyboard typing was lower than that recorded during standard keyboard typing. There was no significant difference in accuracy and error scores; however, there was a significant difference between transverse plane angles of $60^{\circ}$ and $120^{\circ}$ with regard to comfort. In conclusion, a vertical keyboard with a transverse plane angle of $60^{\circ}$ would be effective in reducing muscle activity compared with vertical keyboards with other transverse plane angles.

  • PDF

The Influences of Deteriorated Visuo-spatial Attention Allocation Ability Caused by Aging on Emotional Perception Bias (노화에 의해 저하된 시공간 주의배분능력이 정서지각 편향성에 미치는 영향)

  • Kim, Sang-Yub;Jung, Jae-Bum;Nam, Ki-Chun
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.3-20
    • /
    • 2020
  • The purpose of this study was to investigate the effect of aging on visuo-spatial attention allocation ability and emotional perception bias. We used the useful field of view (UFOV) task to measure the visuo-spatial attention allocation ability and the emotional perception task to measure positive and negative emotional perception bias. A total of 48 participants took part in this study with 23 participants in the senior group and 25 in the junior group. The senior group showed slower response time and lower accuracy than the junior group in the UFOV task, indicating that the senior group had lower visuo-spatial attention allocation ability than the junior group. In the emotional perception task, the senior group showed both positive and negative emotional perception bias more than the junior group. The correlation analysis showed that the negative emotional perception bias for accuracy in the emotional perception task showed a positive correlation with the response time to the stimuli presented in the visual angle 30° in the UFOV task (r=.289). In addition, positive emotional perception bias for the accuracy in the emotional perception task showed a positive correlation with the accuracy of the stimuli presented in the visual angles 10°, 20°, and 30° in the UFOV task (r=.305, r=.322, and r=.299, respectively). However, it showed a negative correlation with the response time of the stimuli presented in the same location in the UFOV task (r=-.345, r=-.295, r=-.308). These results suggest that aging is associated with a decrease in the visuo-spatial attention allocation ability and perceptual bias toward positive and negative emotions. In addition, the positive and negative emotional perception biases associated with aging are potentially related to the reduced visuo-spatial attention allocation ability.

Fitts' Law for Angular Foot Movement in the Foot Tapping Task

  • Park, Jae-Eun;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.647-655
    • /
    • 2012
  • Objective: The purpose of this study was to confirm difference between angular foot movement time and existing foot Fitts' law predicting times, and to develop the angular foot Fitts' law in the foot tapping task. Background: Existing studies of foot Fitts' law focused on horizontal movement to predict the movement time. However, when driving a car, humans move their foot from the accelerator to the brake with a fixed heel. Therefore, we examined the experiment to measure angular foot movement time in reciprocal foot tapping task and compared to conventional foot Fitts' law predicting time. And, we developed the angular foot Fitts' law. Method: In this study, we compared the angular foot movement time in foot tapping task and the predicted time of four conventional linear foot Fitts' law models - Drury's foot Fitts' law, Drury's ballistic, Hoffmann's ballistic, Hoffmann's visually-controlled. 11 subjects participated in this experiment to get a movement time and three target degrees of 20, 40, and 60 were used. And, conventional models were calculated for the prediction time. To analyze the movement time, linear and arc distance between targets were used for variables of model. Finally, the angular foot Fitts' law was developed from experimental data. Results: The average movement times for each experiment were 412.2ms, 474.9ms, and 526.6ms for the 89mm, 172mm, and 253mm linear distance conditions. The results also showed significant differences in performance time between different angle level. However, all of conventional linear foot Fitts' laws ranged 135.6ms to 401.2ms. On the other hand, the angular foot Fitts' law predicted the angular movement time well. Conclusion: Conventional linear foot Fitts' laws were underestimated and have a limitation to predict the foot movement time in the real task related angular foot movement. Application: This study is useful when considering the human behavior of angular foot movement such as driving or foot input device.

SCARA robot calibration on off-line programming (오프라인 프로그래밍에서 스카라 로봇의 보정)

  • Jung, Sung-Woo;Son, Kwon;Lee, Min-Chul;Choi, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1832-1835
    • /
    • 1997
  • Off-line programming systems are widely spread in assembly lines of minute electronic products to huge offshore structures. Any OLP system has to be calibrated before the on-line robot tasks are performed because there are inherent differences between the CAD model on OLP and the real robot workspace. This paper uses simple geometric expressions to propose a calibration method applicable to an OLP for SCARA robots. A positioning task on the two-dimensional horizontal surface was used in the error analysis of a SCARA robot and the anaysis shows that the inaccuracy results from the two error sources non-zero offset angles of two rotational joints at the zero return and differences in link lengths. Pen marks on a sheet of plotting paper are used to determine the accurate data on the joint centers and link dimensions. The calculated offset angles and link lengths are fed back to the OLP for the calibration of the CAD model of the robot and task environments.

  • PDF

Determination of the Optimal Design Parameters for Search Task with VDT Screen Written in Korean (탐색작업에서 한글 VDT를 화면의 최적설계 모수의 결정)

  • 황우상;이동춘
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.42
    • /
    • pp.39-47
    • /
    • 1997
  • There are four parameters (i.e. overall density, local density, grouping, layout complexity) to consider in designing screen of a visual display terminal. Among these, only the optimum level of overall density is known to be about 25~30% by some studies. Therefore, the present experiment is conducted to define the optimum levels of the other parameters to achieve the user's best performance in visual search task. The results are as follows; (1) The function related to the levels of local density and user's search times is shown to be U -shaped. When the level of local density is about 40%, the search time is shorter than those of any other levels. (2) In the experiment of grouping, user's performance is best when the number of group is 5, and the size of group does not exceed visual angle $5^{\circ}$ (0,088rad). (3) The user performance is improved as the layout becomes less complex.

  • PDF

A study on the rigid bOdy placement task of robot system based on the computer vision system (컴퓨터 비젼시스템을 이용한 로봇시스템의 강체 배치 실험에 대한 연구)

  • 장완식;유창규;신광수;김호윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1114-1119
    • /
    • 1995
  • This paper presents the development of estimation model and control method based on the new computer vision. This proposed control method is accomplished using a sequential estimation scheme that permits placement of the rigid body in each of the two-dimensional image planes of monitoring cameras. Estimation model with six parameters is developed based on a model that generalizes known 4-axis scara robot kinematics to accommodate unknown relative camera position and orientation, etc. Based on the estimated parameters,depending on each camers the joint angle of robot is estimated by the iteration method. The method is tested experimentally in two ways, the estimation model test and a three-dimensional rigid body placement task. Three results show that control scheme used is precise and robust. This feature can open the door to a range of application of multi-axis robot such as assembly and welding.

  • PDF

Design of Sliding Mode Controller for Ship Position Control (선박위치제어를 위한 슬라이딩모드 제어기 설계)

  • Bui, Van Phuoc;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.869-874
    • /
    • 2011
  • This paper addresses the trajectory tracking problem for ship berthing by using sliding mode technique. With significant potential advantages: insensitivity to plant nonlinearities, parameter variations, remarkable stability and robust performance with environmental disturbances, the multivariable sliding modes controller is proposed for solving trajectory tracking of ship in harbor area. In this study, the ship position and heading angle are simultaneously tracked to guarantees that the ship follows a given path (geometric task) with desired velocities (dynamic task). The stability of the proposed control law is proved based on Lyapunov theory. The proposed approach has been simulated on a computer model of a supply vessel with good results.

Sensory substitution in perceiving architectural surfaces

  • Kim, Young-Kil;Young, Rockefeller-S.L.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.573-580
    • /
    • 1992
  • 인공건물의 평면특성에 대한 시각을 통한 인지를 청각으로 대체했을 경우의 인지능력을 측정하였다. 정상적으로 시각(visual)을 이용하겠으나, 시각 장애자의 경우는 청각(auditory) 또는 촉각(tactile) 또는 두가지 모두를 사용하게 된다. Psychophysical approach를 사용하여 모의평면에 대한 인지능력을 JND단위로 측정하였다. 청각적인 신호를 관찰자에게 제공하기 위해 전자장치(electronic ranging device)가 고안되었다. 이 장치는 목표물까지의 거리를 초음파의 이동시간으로 측정하여 음의세기(sound level)로 발생시켜 준다. 관찰자는 이 음의 세기를 듣고 거리를 추정하고 물표의 방향은 이 장비를 쥔 손의 방향, 즉, proprioceptive cue를 이용하게 된다. 세가지 task에 대한 실험은 평면의 slantness, 두 평면이 교차하는 모서리의 크기, 두 평면사이의 공간(aperture size)등에 대한 인지능력의 측정실험이다. 실험결과를 보면, 관찰자는 시각신호 대신에 청각신호를 사용할 수 있는 능력이 있는 것으로 나타났다. 세가지 task별 JND측정치는 slant angle 6도, 모서리의 concavity 10도, angular aperature size 3-5도로 나타났다. 이 결과는 정상인이 시각을 이용한 인지능력과 큰 차이가 없음을 보여주고 있다.

  • PDF

A Study on the Edge Following of Task Object by Industrial Robot Using F/T Sensor (F/T Sensor를 이용한 산업용 로봇에 의한 물체 선단추적에 관한 연구)

  • 최성락;정광조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.26-34
    • /
    • 1998
  • In this paper, a force control algorithm for edge following task is suggested. Through the contact state modeling between rigid part and end-effector of robot, contact force and contact angle that are essencial parameters to build the control strategies for following movement of end-effector are derived. From these two parameters, we discriminate the every contact state into 8 cases and calculate the new moving position and direction simply. For the experiment. RX90 robot from Staubli with robot language V$^{+}$ is applied and F/T sensor is attached to the wrist of robot with RCC. Finally, 3 edge following experiments including the following of corner point are executed with successful results.s.

  • PDF