Purpose : This study was assessed muscle activity and onset time in trunk and upper extremity on functional reaching. Methods : The participant was 18 female(young 10, old 8). As functional reaching, we collection data by using EMG(MP150) on transverse abdominis, external oblique, erector spinae, deltoid middle and serratus anterior. Results : 1) In functional reaching, transverse abdominis, external oblique, erector spinae and deltoid middle muscle activity was augmented on old female(p>.05). Serratus anterior was augmented on young female(p>.05). 2) In functional reaching, transverse abdominis and erector spinae muscle onset time is significantly faster old female than young female(p<.05). External oblique and serratus anterior muscle onset time is faster old female than young female(p>.05). 3) As increase of age muscle activity of external oblique was more increased that we found .511 a coefficient correlation and onset time more faster on transverse abdominis and erector spinae were each -.492 and -.554 coefficient correlation. Conclusion : The muscle activity and onset time was difference in functional reaching according to ageing and task context. It is necessary concentration and attention to old female than young female. Therefore, these results suggest that importance of anticipatory postural control and selective strategy of postural control.
Unpacking and dispersing rights of various kinds formerly enjoyed by a selected few has been the constant motivation behind the democratization and modernization of human society. Human rights and later civil rights have continuously been constituted and reconstituted in response to the demands of the laboring class, slaves, women, subalterns, animals, and things, expanding beyond the boundaries of class, race, nation, sexuality, gender, species and organism. Calling attention to the ways in which literary and cultural texts have narrated rights so as to inscribe these human, nonhuman, and inhuman demands. Narrating rights offer opportunities to interrogate the lasting contributions of English language and literature to questioning, reforming, and practicing rights. The interrogation is particularly pertinent in this age in which revised and dispersed rights are creating new conflicts, requiring them to be narrated differently and imaginatively so as to allow all the parties in conflict to participate in working out the conflicts. With the 2017 theme of "Literature and Human Rights," JELL editorial collective hope to explore the relationship between literature and human rights in its multiple simultaneous, and plural manifestations in an open platform. "Narrating Rights" is a double-edged task that, on one hand, reflects the singular life conditions or contexts of a human, inhuman or nonhuman being and, on the other hand, aspires to the perpetual process of rights' universal application. Eleven out of all the keynote speakers at the 2017 ELLAK Convention were invited to this roundtable on Literature and Human Rights. The following transcription includes the dialogues of the eleven discussants.
Journal of the Korean Institute of Educational Facilities
/
v.28
no.2
/
pp.3-10
/
2021
Community-based design is also becoming important in Korea recently. However, the existing design methods of the "conformity" method had the problem of excluding the participation of residents. Therefore, the "decision-making" method, in which residents participate in the design themselves, is drawing attention. Development of specific methods is important for residents to actively participate in "decision making." The theory of "Design Games" has long been studied as a method of community-based design in many countries. The old downtown areas of Jeju Special Self-Governing Province are increasing in number of buildings abandoned due to aging and declining. Abandoned buildings are causing many social problems. A decision-making method has been developed in Jeju for the regeneration design of abandoned buildings. This study conducted a design workshop involving residents on abandoned buildings in the old city center of Jeju City. The possibility and task of decision-making method were analyzed. As a result, participating residents were actively involved in decision-making. It also helped residents understand and learn about the attractions of the neighborhood. Meanwhile, there were also difficulties in communicating among some participants. This is a structural problem with this method. Studies have also shown that it is important for residents themselves to try to understand the neighborhood.
In recent years, using Deep Learning methods to apply for medical and biomedical image analysis has seen many advancements. In clinical, using Deep Learning-based approaches for cancer image analysis is one of the key applications for cancer detection and treatment. However, the scarcity and shortage of labeling images make the task of cancer detection and analysis difficult to reach high accuracy. In 2015, the Unet model was introduced and gained much attention from researchers in the field. The success of Unet model is the ability to produce high accuracy with very few input images. Since the development of Unet, there are many variants and modifications of Unet related architecture. This paper proposes a new approach of using Unet++ with pretrained EfficientNet as backbone architecture for breast tumor cell nuclei segmentation and uses the multi-organ transfer learning approach to segment nuclei of breast tumor cells. We attempt to experiment and evaluate the performance of the network on the MonuSeg training dataset and Triple Negative Breast Cancer (TNBC) testing dataset, both are Hematoxylin and Eosin (H & E)-stained images. The results have shown that EfficientUnet++ architecture and the multi-organ transfer learning approach had outperformed other techniques and produced notable accuracy for breast tumor cell nuclei segmentation.
In recent years, vision-based monitoring has received great attention. However, structural identification using vision-based displacement measurements is far less established. Especially, simultaneous identification of structural systems and unknown excitation using vision-based displacement measurements is still a challenging task since the unknown excitations do not appear directly in the observation equations. Moreover, measurement accuracy deteriorates over a wider field of view by vision-based monitoring, so, only a portion of the structure is measured instead of targeting a whole structure when using monocular vision. In this paper, the identification of structural system and excitations using vision-based displacement measurements is investigated. It is based on substructure identification approach to treat of problem of limited field of view of vision-based monitoring. For the identification of a target substructure, substructure interaction forces are treated as unknown inputs. A smoothing extended Kalman filter with unknown inputs without direct feedthrough is proposed for the simultaneous identification of substructure and unknown inputs using vision-based displacement measurements. The smoothing makes the identification robust to measurement noises. The proposed algorithm is first validated by the identification of a three-span continuous beam bridge under an impact load. Then, it is investigated by the more difficult identification of a frame and unknown wind excitation. Both examples validate the good performances of the proposed method.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.10
/
pp.3355-3372
/
2022
Composing music is an inspired yet challenging task, in that the process involves many considerations such as assigning pitches, determining rhythm, and arranging accompaniment. Algorithmic composition aims to develop algorithms for music composition. Recently, algorithmic composition using artificial intelligence technologies received considerable attention. In particular, computational intelligence is widely used and achieves promising results in the creation of music. This paper attempts to provide a survey on the music generation based on the Monte Carlo (MC) algorithm. First, transform the MIDI music format files to digital data. Among these data, use the logistic fitting method to fit the time series, obtain the time distribution regular pattern. Except for time series, the converted data also includes duration, pitch, and velocity. Second, using MC simulation to deal with them summed up their distribution law respectively. The two main control parameters are the value of discrete sampling and standard deviation. Processing the above parameters and converting the data to MIDI file, then compared with the output generated by LSTM neural network, evaluate the music comprehensively.
International Journal of Computer Science & Network Security
/
v.21
no.12spc
/
pp.526-538
/
2021
Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.
Purpose - This study analyzes the situational relationship between the components of job crafting and innovation performance, and based on this, suggests practical alternatives to the effect of the control variables of organizational support. Design/methodology/approach - For this survey, 350 questionnaires were distributed to Korean SME workers from October 5, 2020 to March 20, 2021, and 230 questionnaires were collected. In order to check the validity of the questionnaire, the questionnaire judged to be inappropriate in response was excluded. The recovery rate was 65.7%, and the effectiveness of the questionnaire was 82%. Structural equation model and hierarchical regression analysis are used to analyze those data. Findings - First, job enhancement through job redesign as well as organizational support is a key task in order to expect innovative results from field members. Innovative performance is not created by individual jobs, but is created between jobs and jobs, tasks and tasks, teams and teams, and departments and departments. This is why it is worth paying attention not to the functional approach, but to the interconnection structure of the process. Research implications or Originality - In this study, it was analyzed that structural job resource increase and social job resource increase, which are components of job crafting, had a positive effect on innovation performance, and that challenging job will had no significant effect. Challenging work will itself does not negatively affect innovation performance. Combining the survey and interview, field members who make up the majority of respondents say that they do not lack the will to work. They claim that there is no channel or opportunity to express or practice a challenging will.
International Journal of Computer Science & Network Security
/
v.22
no.3
/
pp.312-318
/
2022
From the past two eras, artificial intelligence has gained the attention of researchers of all research areas. Video editing is a task in the list that starts leveraging the blessing of Artificial Intelligence (AI). Since AI promises to make technology better use of human life although video editing technology is not new yet it is adopting new technologies like AI to become more powerful and sophisticated for video editors as well as users. Like other technologies, video editing will also be facilitated by the majestic power of AI in near future. There has been a lot of research that uses AI in video editing, yet there is no comprehensive literature review that systematically finds all of this work on one page so that new researchers can find research gaps in that area. In this research we conducted a statically approach called, systematic mapping study, to find answers to pre-proposed research questions. The aim and objective of this research are to find research gaps in our topic under discussion.
Recently, interest in living safety and crime prevention is increasing. The reality is that most women have anxiety about social safety and ultimately want a safe return to home. As a result of these issues, the Seoul Metropolitan Government and the National Police Agency are implementing various services to alleviate them. However, there are limitations such as that the service can be used only during a limited time or the process of checking whether the patrol is really completed is complicated. Therefore, in this paper, we propose a service platform that overcomes these limitations and suggests the best and shortest patrol route to the police based on the desired patrol location applied by citizens. It is designed based on the MVC pattern, and the functions are divided for each user. It is hoped that the platform will reduce crime rates and allow citizens to ultimately return home with peace of mind. Also we expect that the police will ablet to find places where they did not know about or need to patrol with more attention through the recommended route of the platform, which will be helpful in their task.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.