• 제목/요약/키워드: Target therapy

검색결과 1,122건 처리시간 0.024초

시각적 Target 프로그램이 균형에 미치는 영향 (The Effects of Visual Target Program on Balance)

  • 최재청;지중구;박정서;한슬기
    • 대한물리치료과학회지
    • /
    • 제17권1_2호
    • /
    • pp.33-39
    • /
    • 2010
  • Purpose: The purpose of this study was to analyze the effects of a balance training program using the TARGET Balance Trainer(TBT), which utilizes a visual target, on the balancing ability of normal, healthy individuals. Methods: Twelve healthy female students with an average of 20.7 years(SD=0.25), were participated in this study. They were randomly divided into two groups(6 subjects in each group); experimental group, control group. The experimental group underwent a 3-week training program using the TBT, while the control group trained using only a dynamic air cushion(DAC). Results: Compared to those who trained using only the DAC, participants who trained with the TBT had a smaller difference between the weights distributed(N) to their left and right foot while normal standing with their eyes open. The TBT group also showed a smaller discrepancy between the weights distributed(N) to their left and right sides while standing on one leg with their eyes open, and also with their eyes closed by eye band. Conclusions: TBT is effective to reduce the degree of weight shifting between left and right side in each group. This study is expected to provide a model for future clinical studies.

  • PDF

편마비 환자의 팔 뻗기 과제 수행 시 목표거리와 건·환측 사용에 따른 운동시간과 체간의 움직임 분석 (Analysis of Movement Time and Trunk Motions According to Target Distances and Use of Sound and Affected Side During Upper Limb Reaching Task in Patients With Hemiplegia)

  • 김기송;유환석;정도헌;전혜선
    • 한국전문물리치료학회지
    • /
    • 제17권1호
    • /
    • pp.36-42
    • /
    • 2010
  • The aim of this study was to investigate effects of reaching distance on movement time and trunk kinematics in hemiplegic patients. Eight hemiplegic patients participated in this study. The independent variables were side (sound side vs. affected side) and target distance (70%, 90%, 110%, and 130% of upper limb). The dependent variables were movement time measured by pressure switch and trunk kinematics measured by motion analysis device. Two-way analysis of variance with repeated measures was used with Bonferroni post-hoc test. (1) There were significant main effects in side and reaching distance for movement time (p=.01, p=.02). Post-hoc test revealed that there was a significant difference between 110% and 130% of reaching distance (p=.01). (2) There was a significant main effect in side and reaching distance for trunk flexion (p=.01, p=.00). Post-hoc test revealed that there were significant differences in all pair-wise reaching distance comparison. (3) There was a significant side by target distance interaction for trunk rotation (p=.04). There was a significant main effect in target distance (p=.00). Post-hoc test revealed that there were significant differences between 70% and 110%, 70% and 130%, 90% and 110%, 90% and 130% of target distance. It was known that trunk flexion is used more than trunk rotation during reaching task in hemiplegic patients from the findings of this study. It is also recommended that reaching training is performed with limiting trunk movement within 90% of target distance whereas reaching training is performed incorporating with trunk movement beyond 90% of target distance in patients with hemiplegia.

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

양손으로 물체 옮기기 과제 수행 시 우세손이 옮기는 물체의 종류와 목표점의 위치 변화가 비우세손의 팔뻗기 동작에 미치는 영향 (The Influence of Different Objects and Target Locations of Dominant Hand on the Non-Dominant Hand Movement Kinematics in Bimanual Reaching)

  • 김민희;전혜선
    • 한국전문물리치료학회지
    • /
    • 제15권3호
    • /
    • pp.44-52
    • /
    • 2008
  • The purpose of this study was to investigate the effects of different objects and target location of dominant hand on the non-dominant hand movement kinematics in a bimanual reaching task. Fifteen right-handed volunteers were asked to reach from same starting point to the different target point of right and left hand with grasping the objects of different size. Independent variables were 1) three different object types (small mug cup, name pen, and PET bottle), and 2) three different target locations (shorter distance, same distance, and longer distance than the non-dominant hand) of the dominant hand. Dependent variables were movement time (MT), movement distance (MD), movement mean velocity ($MV_{mean}$), and movement peak velocity ($MV_{peak}$) of the non-dominant hand. Repeated measures two-way analysis of variance (ANOVA) was used to test for differences in the non-dominant hand movement kinematics during bimanual reaching. The results of this study were as follows: 1) MT of the non-dominant hand was increased significantly when traveling with grasping the mug cup and reaching the far target location, and was decreased significantly when traveling with grasping the PET bottle and reaching the near target location of the dominant hand. 2) MD of the non-dominant hand was significantly increased during reaching the far target location, and significantly decreased during reaching the near target location with dominant hand. 3) $MV_{mean}$ of the non-dominant hand was increased significantly when traveling with grasping the PET bottle, and was decreased significantly when traveling with grasping the mug cup of the dominant hand. Therefore, it can be concluded that the changes of the ipsilateral hand movement have influence on coupling of the contralateral hand movement in bimanual reaching.

  • PDF

Dosimetric Impact of Ti Mesh on Proton Beam Therapy

  • Cho, Shinhaeng;Goh, Youngmoon;Kim, Chankyu;Kim, Haksoo;Jeong, Jong Hwi;Lim, Young Kyung;Lee, Se Byeong;Shin, Dongho
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.144-148
    • /
    • 2017
  • When a high density metallic implant is placed in the path of the proton beam, spatial heterogeneity can be caused due to artifacts in three dimensional (3D) computed tomography (CT) scans. These artifacts result in range uncertainty in dose calculation in treatment planning system (TPS). And this uncertainty may cause significant underdosing to the target volume or overdosing to normal tissue beyond the target. In clinical cases, metal implants must be placed in the beam path in order to preserve organ at risk (OARs) and increase target coverage for tumors. So we should introduce Ti-mesh. In this paper, we measured the lateral dose profile for proton beam using an EBT3 film to confirm dosimetric impact of Ti-mesh when the Ti-mesh plate was placed in the proton beam pathway. The effect of Ti-mesh on the proton beam was investigated by comparing the lateral dose profile calculated from TPS with the film-measured value under the same conditions.

파킨슨병 환자 보행에서 눈 높이 위수준의 시작 목표에 대한 두 걸음 구두 암시의 효과 (The Effect of Using a Two Step Verbal Cue to a Visual Target above Eye Level on the Parkinsonian Gait)

  • 김종만;안덕현;최운성
    • 한국전문물리치료학회지
    • /
    • 제1권1호
    • /
    • pp.92-97
    • /
    • 1994
  • It is well known that visual cues can improve the motor performance of Parkinsonian patients. Previous laboratory studies have examined the effects of visual cueing to the floor. This case study examined the effects of using a visual cue above eye level on the gait of a Parkinsonian man. It was found that cueing the patient to a target above eye level while waking not only improved the kinematic parameters of the gait cycle but also facilitated a more functional gait pattern with re-intergration of arm swing, rhythm, heel strike and a more erect posture. Visual targeting above eye level may serve as an important clinical tool for physiotherapists treating Parkinsonian patients.

  • PDF

Image Guided Radiation Therapy

  • Ui-Jung Hwang;Byong Jun Min;Meyoung Kim;Ki-Hwan Kim
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.37-52
    • /
    • 2022
  • Over the past decades, radiation therapy combined with imaging modalities that ensure optimal image guidance has revolutionized cancer treatment. The two major purposes of using imaging modalities in radiotherapy are to clearly delineate the target prior to treatment and set up the patient during radiation delivery. Image guidance secures target position prior to and during the treatment. High quality images provide an accurate definition of the treatment target and the possibility to reduce the treatment margin of the target volume, further lowering radiation toxicity and improving the quality of life of cancer patients. In this review, the various types of image guidance modalities used in radiation therapy are distinguished into ionized (kilovoltage and megavoltage image) and nonionized imaging (magnetic resonance image, ultrasound, surface imaging, and radiofrequency). The functional aspects, advantages, and limitation of imaging using these modalities are described as a subsection of each category. This review only focuses on the technological viewpoint of these modalities and any clinical aspects are omitted. Image guidance is essential, and its importance is rapidly increasing in modern radiotherapy. The most important aspect of using image guidance in clinical settings is to monitor the performance of image quality, which must be checked during the periodic quality assurance process.

동적조형회전조사 시 표적종양의 위치변위와 조사반경의 변화에 따른 선량전달 오류분석 (Analysis of Dose Delivery Error in Conformal Arc Therapy Depending on Target Positions and Arc Trajectories)

  • 강민영;이보람;김유현;이정우
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제34권1호
    • /
    • pp.51-58
    • /
    • 2011
  • 본 연구의 목적은 회전조사 시 표적종양의 위치변위와 갠트리의 조사반경에 의한 치료깊이 변화에 따른 모의치료계획 결과와 선량전달 결과상의 오차를 분석하고자 하였다. 깊이 변위가 가장 이상적인 경우, 즉 팬텀의 중심에 표적이 위치한 경우와 한쪽으로 2.5 cm, 5 cm씩 치우친 경우로 나누어 모의실험하였다. 표적의 위치 변화에 따른 모의치료계획을 실시하기 위하여 IMRT Body 팬톰(I'mRT Phantom, Wellhofer Dosimetry, Germany)를 이용하여 전산화단층촬영장치(Computed Tomography, Light speed 16, GE, USA)로 데이터를 획득하였다. 획득된 영상을 이용하여 치료계획장치(Treatment Planning System, Eclipse, ver. 6.5, VMS, Palo Alto, USA)를 이용하여 정중앙, 2.5 cm, 5 cm에 가상의 치료표적을 만들어 모의치료계획을 수립하였다. 선형가속기(CL21EX, VMS, Palo Alto, USA)의 6 MV 광자선과 최근 개발된 Gafchromic 필름(EBT2, ISP, Wayne, USA)을 이용하여 선량분포를 측정하였고, 선량분석프로그램(OmniPro-IMRT, ver. 1.4, Wellhofer Dosimetry, Germany)을 이용하여 모의치료계획 데이터와 측정 데이터를 정량적으로 분석하였다. 분석프로그램으로 횡축방향 선량분포 프로파일(Cross-plane profile)과 선량분포를 정량적으로 분석하기 위하여 감마인덱스(DD: 3%, DTA: 2 mm) 히스토그람을 이용하였다. 표적과 표적주변의 선량분포는 Conformity index(CI), Homogeneity index(HI)를 이용하여 정량적으로 분석하였다. 치료표적 전체체적에 대한 100% 선량분포에 포함되는 체적을 비교하여 분석하였다. 표적의 위치가 5 cm 에 있는 경우 다문동적회전조사(Multiple Conformal Arc Therapy, MCAT)는 23.8%, 단일동적회전조사(Single Conformal Arc Therapy, SCAT)는 35.6%, 고정조사는 37%였고, 표적이 2.5 cm에 있는 경우 MCAT 61%, SCAT 21.5%, 고정조사 14.2%로 분석되었다. 표적의 위치가 중앙에 있는 경우 MCAT 70.5%, SCAT 14.1%, 고정조사 36.3%로 나타났다. 표적의 위치가 5 cm 치우쳐 있는 경우를 제외하고 MCAT의 100% 선량분포에 포함되는 체적이 가장 크게 나타났다. 감마인덱스 히스토그램 분석결과, SCAT의 경우 37.1, 27.3, 29.2로 MCAT의 경우 9.2, 8.4, 10.3에 비해 최소 2.8배, 최대 4배 오차가 크게 나타났다. 결론적으로, 동적조형회전조사 시 표적종양의 위치변이와 조사반경의 변화에 따라 선량전달오류의 가능성을 알 수 있었으며 치료표적의 위치가 정중앙이 아닐 경우, 깊이와 회전반경을 최적화함으로써 정확한 선량 전달을 할 수 있다고 생각한다.

양성자치료에서의 종양의 위치 및 깊이 검출 자동화 시스템에 관한 연구 (Automated Determination of Prostate Depth for Planning in Proton Beam Treatment)

  • 정민호;윤명근;김진성;신동호;박성용;이세병
    • 한국의학물리학회지:의학물리
    • /
    • 제20권3호
    • /
    • pp.180-190
    • /
    • 2009
  • 전립선암의 위치는 방사선 치료도중 변하는 경우가 많으며 이는 종양선량을 낮추고 정상조직선량이 높아질 수 있다. 이 논문의 목적은 방사선 치료중에 전립선암의 위치 및 깊이 변화를 자동적으로 감지하는 시스템을 개발하고 이를 적용해 환자의 국부에 조사되는 방사선량의 변화를 최소화 하는 데 있다. 이 연구에서는 10명의 환자로부터 38장의 영상자료를 통해 수행되었으며 전립선암에 부착된 금-표지자를 이용해 종양의 질량중심을 구하고 이를 기반으로 종양의 위치변화를 감지하였다. 전립선암의 평균적인 위치변화는 좌우와 위아래로 각각 0.9 mm와 2.3 mm이었으며 최고 위치변화는 각 각 3.3 mm와 7.2 mm였다. 일상적으로 전립선암의 양성자치료에 많이 사용되는 마주보는 두 개의 양성자빔(bilateral beam configuration) 조건에서 좌우의 위치변화는 깊이 변화를 의미하며 이는 약 0.7 mm에서 3.3 mm까지 변화하고 있음을 알 수 있었다. 실험결과 종양의 깊이 변화가 1 mm, 2 mm 그리고 3 mm 보다 많이 차이 나는 경우가 각각 42.1%, 26.3% 그리고 2.6%로 나타났다. 이러한 결과를 토대로 봤을 때 양성자치료에서 자동적으로 종양의 깊이 변화를 분석하는 것이 가능하다는 것을 알 수 있었으며 이를 이용한다면 종양선량을 높이고 정상조직선량을 낮추어 치료효과를 높일 수 있다.

  • PDF

Dosimetric Analysis on the Effect of Target Motion in the Delivery of Conventional IMRT, RapidArc and Tomotherapy

  • Song, Ju-Young
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.164-170
    • /
    • 2017
  • One of the methods to consider the effect of respiratory motion of a tumor target in radiotherapy is to establish a treatment plan with the internal target volume (ITV) created based on an accurate analysis of the target motion displacement. When this method is applied to intensity modulated radiotherapy (IMRT), it is expected to yield a different treatment dose distribution under the motion condition according to the IMRT method. In this study, we prepared ITV-based IMRT plans with conventional IMRT using fixed gantry angle beams, RapidArc using volumetric modulated arc therapy, and tomotherapy using helical therapy. Then, the variation in dose distribution caused by the target motion was analyzed by the dose measurement in the actual motion condition. A delivery quality assurance plan was prepared for the established IMRT plan and the dose distribution in the actual motion condition was measured and analyzed using a two-dimensional diode detector placed on a moving phantom capable of simulating breathing movements. The dose measurement was performed considering only a uniform target shape and motion in the superior-inferior (SI) direction. In this condition, it was confirmed that the error of the dose distribution due to the target motion is minimum in tomotherapy. This is thought to be due to the characteristic of tomotherapy that treats the target sequentially by dividing it into several slices. When the target shape is uniform and the main target motion direction is SI, it is considered that tomotherapy for the ITV-based IMRT method has a characteristic which can reduce the dose difference compared with the plan dose under the target motion condition.