• Title/Summary/Keyword: Target spectrum

Search Result 405, Processing Time 0.027 seconds

Calculations of ISO Narrow and ANSI X-Ray Spectra, Their Average Energies and Conversion Coefficients (ISO Narrow Series및 ANSI의 X선 스펙트럼, 평균에너지 및 선량환산인자의 이론적 계산)

  • Kim, Jang-Lyul;Kim, Bong-Whan;Chang, Si-Young;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.129-136
    • /
    • 1995
  • In spite of the prescriptions on the reference X-ray fields given by the International Organization of Strandard(ISO) and American National Standard Institute(ANSI), the measurement of X-ray spectrum is not only time consuming but very difficult, paticularly when significant corrections have to be applied to the measured pulse-height distributions of the observed spectra. This paper describes the calculation method of ISO Narrow Series and ANSI X-ray filtered radiations by theoretical model which is modified framer's theory by target attenuation and backscatter correction. The X-ray spectra, average energies and conversion coefficients are calculated and compared with those obtained using the spectra prescribed by ISO and AMSI to assure good agreement.

  • PDF

Seismic Performance Evaluation of Staggered Truss System by the Shape of Truss (트러스 형태에 따른 스태거드트러스 골조시스템의 내진성능 평가)

  • Hong, Yoon-Soo;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.397-404
    • /
    • 2017
  • The purpose of this study is to evaluate the seismic performance of Staggered Truss Frame(STF) system while changing a shape of truss. The model of this project is a office building of ten floors with Pratt, Howe, Warren, K and Vierendeel truss system applied on each model. Next step is to select the section of elements which satisfy the highest demand capacity ratio by structure design considering gravity load, earthquake load and wind load and then calculate natural period, base shear and story drifts. On the basis of these values, Capacity Spectrum Method(CSM) shows the plastic behavior of STF system such as performance point of Design Earthquake(DE) and Maximum Considered Earthquake(MCE), yield state, plastic hinge etc. to be compared with other truss systems. As a result, Vierendeel STF system especially was found to have the highest strength and stiffness to the corresponding earthquake and all the models for each truss shape fulfilled the target performance level.

Microwave Filter Design using Tapered Transmission Line Theory (테이퍼 전송선 이론을 이용한 마이크로파 여파기 설계)

  • Gwon, Jin-Uk;Choe, Hyeong-Seok;Jang, Ho-Seong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.28-34
    • /
    • 2000
  • In this paper, we derive a spectral function and a new impedance profile of non-uniform tapered transmission lines by applying the Fourier transform to a linearized Riccati equation. We compensate the error which is from a linearized Riccati equation by adding a Taylor series to the impedance profile. Added terms remove discontinuities In the impedance profile at both ends of the non-uniform section. We show that a calculated spectrum approaches to a target spectrum of filter by an iterative method and numerical examples are given to illustrate the role of the phase function. As the design method which is shown in present paper provides a excellent adaptability for the design of non-uniform tapered transmission lines, the present method can be applied to design filters and impedance matching circuits with various passband characteristics.

  • PDF

A Study on Accuracy Improvement for Range and Velocity Estimates in a FM-CW Radar (FM-CW 레이다에서의 거리 및 속도 추정 정확도 향상에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1752-1758
    • /
    • 2010
  • A FM-CW radar is used for the various purposes as a remote sensing device since it has the advantages of the relatively simple implementation and the low probability of signal interception. A FM-CW radar uses the same frequency modulated continuous wave for both transmission and demodulation. Therefore, the received beat frequency represents the range and Doppler information of targets. However, using the conventional FFT method, the degree of accuracy and resolution in the spectrum estimation can be seriously degraded in the detection and tracking of fast moving targets because of the short dwell time. Therefore, in this paper, the model parameter estimation methods called as an autoregressive method is applied to overcome these problems and showed that the improved accuracy and resolution can be obtained for the target range and velocity estimation.

Hopping Information Generation of Unknown Frequency Hopping Signals in Wireless Channel Environments (무선채널환경에서 미상의 주파수 도약신호에 대한 도약정보 생성 기법)

  • Ahn, Junil;Lee, Chiho;Jeong, Unseob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • A frequency hopping(FH) signal can change its carrier frequency during transmission and has spread-spectrum characteristics in these frequency bands. Therefore, FH signals are widely used in applications that require low-probability-of-intercept(LPI) and anti-jamming (AJ) abilities in wireless communication environments. In this study, the authors propose a method for generating hopping information (HI), which includes start time, dwell time, and hopping frequency for unknown FH signals. The proposed blind HI generation method produces signal detection information based on the spectrum data and then extracts HI using operational procedures for estimating the target FH signal's status, such as appearance, maintenance, and termination. Further, simulation results demonstrate that the proposed method provides accurate HI without detection omissions for various FH signals.

A feasibility study on photo-production of 99mTc with the nuclear resonance fluorescence

  • Ju, Kwangho;Lee, Jiyoung;ur Rehman, Haseeb;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.176-189
    • /
    • 2019
  • This paper presents a feasibility study for producing the medical isotope $^{99m}Tc$ using the hazardous and currently wasted radioisotope $^{99}Tc$. This can be achieved with the nuclear resonance fluorescence (NRF) phenomenon, which has recently been made applicable due to high-intensity laser Compton scattering (LCS) photons. In this work, 21 NRF energy states of $^{99}Tc$ have been identified as potential contributors to the photo-production of $^{99m}Tc$ and their NRF cross-sections are evaluated by using the single particle estimate model and the ENSDF data library. The evaluated cross sections are scaled using known measurement data for improved accuracy. The maximum LCS photon energy is adjusted in a way to cover all the significant excited states that may contribute to $^{99m}Tc$ generation. An energy recovery LINAC system is considered as the LCS photon source and the LCS gamma spectrum is optimized by adjusting the electron energy to maximize $^{99m}Tc$ photo-production. The NRF reaction rate for $^{99m}Tc$ is first optimized without considering the photon attenuations such as photo-atomic interactions and self-shielding due to the NRF resonance itself. The change in energy spectrum and intensity due to the photo-atomic reactions has been quantified using the MCNP6 code and then the NRF self-shielding effect was considered to obtain the spectrums that include all the attenuation factors. Simulations show that when a $^{99}Tc$ target is irradiated at an intensity of the order $10^{17}{\gamma}/s$ for 30 h, 2.01 Ci of $^{99m}Tc$ can be produced.

Fabrication and Characteristics of TO:F Thin Film Deposited by RF Magnetron Sputtering( I ) (고주파 마그네트론 스퍼터링법에 의해 제조된 TO:F 투명도전막의 제조 및 특성( I ))

  • Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.65-73
    • /
    • 1994
  • TO:F($SnO_{2}:F$) thin films were prepared by RF magnetron sputtering system. The dependence of their structural, electrical, and optical properties on deposition conditions such as substrate temperature, working pressure and power was studied. The optimum conditions of TO:F thin film are $SnF_{2}$ content of 15wt.% in target, RF power of 150W, substrate temperature of $150^{\circ}C$ and working pressure of 2mmTr. The resistivity and transmittance at 550nm in visible spectrum of the TO:F film deposited at optimum condition are $9{\times}10^{-4}{\Omega}{\cdot}cm$ and above 85%, respectively. For the films deposited from the target without $SnF_{2}$ and with 15wt.% $SnF_{2}$, the optical bandgaps calculated from the transmittance curves are 3.84 and 3.9eV, respectively. X-ray diffraction patterns showed that TO and TO:F films had tetragonal rutile structure with (101), (200) direction.

  • PDF

Seismic Design of Buckling-Restrained Braced frame Using Equivalent Energy Concept (등가 에너지 개념을 이용한 비좌굴 가새골조의 내진설계)

  • 김진구;최현훈;원영섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.47-55
    • /
    • 2003
  • This study proposed a convenient seismic design procedure for buckling-restrained braced frames based on the equivalent energy concept. The design process begins with the computation of input energy from response spectrum. Then the elastic energy and plastic energy are computed based on the equal energy concept. The computed plastic energy is distributed to each story along energy distribution ratio and the cross-sectional area of each brace is computed so that all the plastic energy is dissipated by the brace. The proposed procedure was applied to the design of three-, six-, and twenty-story steel frames with buckling-restrained braces, and artificial earthquake records were used for verification of the proposed method. According to analysis results, top story displacements of the low-rise structure satisfies the given target displacement however that of the twenty-story structure was much smaller than the given target displacement.

Large eddy simulation of wind effects on a super-tall building

  • Huang, Shenghong;Li, Q.S.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.557-580
    • /
    • 2010
  • A new inflow turbulence generation method and a combined dynamic SGS model recently developed by the authors were applied to evaluate the wind effects on 508 m high Taipei 101 Tower. Unlike the majority of the past studies on large eddy simulation (LES) of wind effects on tall buildings, the present numerical simulations were conducted for the full-scale tall building with Reynolds number greater than $10^8$. The inflow turbulent flow field was generated based on the new method called discretizing and synthesizing of random flow generation technique (DSRFG) with a prominent feature that the generated wind velocity fluctuations satisfy any target spectrum and target profiles of turbulence intensity and turbulence integral length scale. The new dynamic SGS model takes both advantages of one-equation SGS model and a dynamic production term without test-filtering operation, which is particular suitable to relative coarse grid situations and high Reynolds number flows. The results of comparative investigations with and without generation of inflow turbulence show that: (1) proper simulation of an inflow turbulent field is essential in accurate evaluation of dynamic wind loads on a tall building and the prescribed inflow turbulence characteristics can be adequately imposed on the inflow boundary by the DSRFG method; (2) the DSRFG can generate a large number of random vortex-like patterns in oncoming flow, leading to good agreements of both mean and dynamic forces with wind tunnel test results; (3) The dynamic mechanism of the adopted SGS model behaves adequately in the present LES and its integration with the DSRFG technique can provide satisfactory predictions of the wind effects on the super-tall building.

Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

  • Ebrahimkhani, Marziye;Hassanzadeh, Mostafa;Feghhi, Sayed Amier Hossian;Masti, Darush
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.55-63
    • /
    • 2016
  • Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy ($E_e$) and source multiplication coefficient ($k_s$), has been investigated. A Monte Carlo code (MCNPX_2.6) has been used to calculate neutronic parameters such as effective multiplication coefficient ($k_{eff}$), net neutron multiplication (M), neutron yield ($Y_{n/e}$), energy constant gain ($G_0$), energy gain (G), importance of neutron source (${\varphi}^*$), axial and radial distributions of neutron flux, and power peaking factor ($P_{max}/P_{ave}$) in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current ($I_e$) have been decreased in the highest case of $k_s$, but G and ${\varphi}^*$ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing $E_e$ from 100 MeV up to 1 GeV, $Y_{n/e}$ and G improved by 91.09% and 10.21%, and $I_e$ and $P_{acc}$ decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np-Pu assemblies on the periphery allows for a consistent $k_{eff}$ because the Np-Pu assemblies experience less burn-up.