• Title/Summary/Keyword: Target simulator

Search Result 248, Processing Time 0.026 seconds

Usefulness of a new polyvinyl alcohol hydrogel (PVA-H)-based simulator for endoscopic submucosal dissection training: a pilot study

  • Dong Seok Lee;Gin Hyug Lee;Sang Gyun Kim;Kook Lae Lee;Ji Won Kim;Ji Bong Jeong;Yong Jin Jung;Hyoun Woo Kang
    • Clinical Endoscopy
    • /
    • v.56 no.5
    • /
    • pp.604-612
    • /
    • 2023
  • Background/Aims: We developed a new endoscopic submucosal dissection (ESD) simulator and evaluated its efficacy and realism for use training endoscopists. Methods: An ESD simulator was constructed using polyvinyl alcohol hydrogel sheets and compared to a previous ESD simulator. Between March 1, 2020, and December 30, 2021, eight expert endoscopists from three different centers analyzed the procedure-related factors of the simulator. Five trainees performed gastric ESD exercises under the guidance of these experts. Results: Although the two ESD simulators provided overall favorable outcomes in terms of ESD-related factors, the new simulator had several benefits, including better marking of the target lesion's limits (p<0.001) and overall handling (p<0.001). Trainees tested the usefulness of the new ESD simulator. The complete resection rate improved after 3 ESD training sessions (9 procedures), and the perforation rate decreased after 4 sessions (12 procedures). Conclusions: We have developed a new ESD simulator that can help beginners achieve a high level of technical experience before performing real-time ESD procedures in patients.

The Efficient Motion Teaching Method of Quadruped Robot Using Graphic Simulator and Physics Engine (그래픽 시뮬레이터와 물리엔진을 이용한 효과적인 4족 보행로봇의 모션티칭 방법)

  • Ryu, Ji-Hyoung;Kim, Jee-Hong;Lee, Chan-Goo;Yi, Soo-Yeong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.156-158
    • /
    • 2009
  • A graphic simulator is efficient to see what will happen to the target robot. But it is not exactly same as the real world. Because there are so many physical laws to be concerned. In this paper, we propose a simulator with physics engine to create motions for quadruped robot. It is not only to show more real simulations but also to be more efficient for teaching motions to quadruped robot. To solve the quadruped robot's dynamics or inverse kinematics, It takes much times and hard effort. Using physics engine make it easy to setup motions without calculating inverse kinematics or dynamics.

  • PDF

An Implementation Method of Cycle Accurate Simulator for the Design of a Pipelined DSP

  • Park, Hyeong-Bae;Park, Ju-Sung;Kim, Tae-Hoon;Chi, Hua-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.246-251
    • /
    • 2006
  • In this paper, we introduce an implementation method of the CBS (Cycle Base Simulator), which describes the operation of a DSP (Digital Signal Processor) at a pipeline cycle level. The CBS is coded with C++, and is verified by comparing the results from the CBS and HDL simulation of the DSP with the various test vectors and application programs. The CBS shows the data about the internal registers, status flags, data bus, address bus, input and output pin of the DSP, and also the control signals at each pipeline cycle. The developed CBS can be used in evaluating the performance of the target DSP before the RTL(Register Transfer Level) coding as well as a reference for the RTL level design.

Modeling and Simulation of Electron-beam Lithography Process for Nano-pattern Designs using ZEP520 Photoresist (ZEP520 포토리지스트를 이용한 나노 패턴 형성을 위한 전자빔 리소그래피 공정 모델링 및 시뮬레이션)

  • Son, Myung-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.25-33
    • /
    • 2007
  • A computationally efficient and accurate Monte Carlo (MC) simulator of electron beam lithography process, which is named SCNU-EBL, has been developed for semiconductor nanometer pattern design and fabrication. The simulator is composed of a MC simulation model of electron trajectory into solid targets, an Gaussian-beam exposure simulation model, and a development simulation model of photoresist using a string model. Especially for the trajectories of incident electrons into the solid targets, the inner-shell electron scattering of an target atom and its discrete energy loss with an incident electron is efficiently modeled for multi-layer resists and heterogeneous multi-layer targets. The simulator was newly applied to the development profile simulation of ZEP520 positive photoresist for NGL(Next-Generation Lithography). The simulation of ZEP520 for electron-beam nanolithography gave a reasonable agreement with the SEM experiments of ZEP520 photoresist.

  • PDF

The Development of Virtual Fire Control System Considering Operational Environment of Helicopter (헬기 운용환경을 고려한 가상 사격 통제 시스템 개발)

  • Kim, Woosik;Lee, Dongho;Jang, Indong;Park, Hanjoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.448-455
    • /
    • 2014
  • Virtual Fire Control System(VFCS) in attack helicopter is developed. VFCS is comprised of multifunction display, store management computer, mission computer, target acquisition and designation system, mission planning system, weapon simulator and flight simulator. Weapon engagement process under the operational environment of helicopter was considered by using the VFCS. We considered hellfire missile, tow missile, unguided rocket and turret gun. The results of this study will be utilized efficiently on integrated fire control system SIL(System Integration Lab.) in attack helicopter.

Development of Dynamic Model of 680 MW Rated Steam Turbine and Verification and Validation of its Speed Controller (680 MW 증기터빈 동적모델 개발 및 속도제어기 검증)

  • Choi, Inkyu;Woo, Joohee;Son, Gihun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2019
  • The steam turbine used in nuclear power plant is modeled for the purpose of verification of control system rather than the operator education. The valves, reheater and generator are modeled also and integrated into the simulator. After that, the operation data and the designed data such as heat balance diagram are utilized to identify the model parameters. It was evident that model outputs of developed simulator are very close to the measured operating ones. The simulator within dynamic model was used to verify and validate the whole control system together with field instruments. And the target plant has been operating long time.

Development of 6-DOF Simulator for Active Engine Mounting System (능동형 엔진 마운트 성능 평가를 위한 6축 시뮬레이터 구축)

  • Kim, Jeong-Hoon;Kim, Jae-San;Lee, Han-Dong;Park, Tae-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.520-525
    • /
    • 2011
  • As worldwide concern stands on global warming and greenhouse gases from internal combustion engine, the interests in technologies for a highly efficient powertrain has been increased. Concurrently the investigation to improve the deteriorated NVH, a by-product of energy efficient powertrain, is conducted seriously. The NVH performance of a new type of active engine mount that offers increased advantages over a passive hydraulic mount is examined using a newly developed 6-DOF simulator. The simulator is in the shape of Hexapod Stewart Platform adopting LEMA, a new type of actuator which is patented and commercialized by ACT Inc,, the world wide leader in the design, development, and manufacture of high performance linear electro-magnetic actuators for active vibration control. The target vibration signals of an aimed vehicle at four engine mounts are measured and simulated by 6-DOF simulator at the laboratory. The resulting NVH performances of the new active mounting system at a vehicle and on a simulator are examined and compared. Even though the active mount performance of lab test demonstrates less effective than the result of a real vehicle test, vibration reduction is identified through the simulator.

  • PDF

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Design of a Multi-Sensor Data Simulator and Development of Data Fusion Algorithm (다중센서자료 시뮬레이터 설계 및 자료융합 알고리듬 개발)

  • Lee, Yong-Jae;Lee, Ja-Seong;Go, Seon-Jun;Song, Jong-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.93-100
    • /
    • 2006
  • This paper presents a multi-sensor data simulator and a data fusion algorithm for tracking high dynamic flight target from Radar and Telemetry System. The designed simulator generates time-asynchronous multiple sensor data with different data rates and communication delays. Measurement noises are incorporated by using realistic sensor models. The proposed fusion algorithm is designed by a 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad data and sensor faults. The designed algorithm is verified by using both simulation data and actual real data.

A Study of a Physical Property Setting Method for Haptic Rendering of Deformable Volumetric Objects (가변형 볼륨 물체의 햅틱 렌더링을 위한 물리적 속성 결정 방법의 연구)

  • Kim, Jae-Oh;Kim, Sang-Youn
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1146-1159
    • /
    • 2008
  • This paper proposes a method for determining material property of a haptic model which represents the haptic behavior of a target object. This paper also presents a haptic rendering framework. We adapt elastography to obtain the physical property of a target object. One of the key differences between the proposed framework and a traditional method is that the physical property of the target object can be easily set into a haptic model. For evaluating the proposed method, we construct a real-time palpation prototype simulator. In our work, a human liver is selected as a target object and the liver is represented by Shape-retaining Chain Linked Model(S-chain model) for satisfying the real-time performance. We conduct experiments whether a user easily distinguishes abnormal portions from normal portions. From the experimental results, we evaluate that the proposed method provides the discriminable force to users in real-time.

  • PDF