• Title/Summary/Keyword: Target protein

Search Result 1,546, Processing Time 0.027 seconds

Kinetic analysis of Drosophila Vnd protein containing homeodomain with its target sequence

  • Yoo, Si-Uk
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.407-412
    • /
    • 2010
  • Homeodomain (HD) is a highly conserved DNA-binding domain composed of helix-turn-helix motif. Drosophila Vnd (Ventral nervous system defective) containing HD acts as a regulator to either enhance or suppress gene expression upon binding to its target sequence. In this study, kinetic analysis of Vnd binding to DNA was performed. The result demonstrates that DNA-binding affinity of the recombinant protein containing HD and NK2-specific domain (NK2-SD) was higher than that of the full-length Vnd. To access whether phosphorylation sites within HD and NK2-SD affect the interaction of the protein with the target sequence, alanine substitutions were introduced. The result shows that S631A mutation within NK2-SD does not contribute significantly to the DNA-binding affinity. However, S571A and T600A mutations within HD showed lower affinity for DNA binding. In addition, DNA-binding analysis using embryonic nuclear protein also demonstrates that Vnd interacts with other nuclear proteins, suggesting the existence of Vnd as a complex.

Inhibition of protein tyrosine phosphatase non-receptor type 2 by PTP inhibitor XIX: Its role as a multiphosphatase inhibitor

  • Le, Hien Thi Thu;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.329-334
    • /
    • 2017
  • Protein tyrosine phosphatases (PTPs) play crucial roles in signal transduction and their functional alteration has been detected in many diseases. PTP inhibitors have been developed as therapeutic drugs for diseases that are related to the activity of PTPs. In this study, PTP inhibitor XIX, an inhibitor of CD45 and PTEN, was investigated whether it inhibits other PTPs. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) was selectively inhibited by the inhibitor in a competitive manner. Drug affinity responsive target stability (DARTS) analysis showed that the inhibitor induces conformational changes in PTPN2. Phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) at Tyr-705, a crucial site for STAT3 activation and target site of PTPN2, decreased upon exposure to the inhibitor. Our results suggest that PTP inhibitor XIX might be considered as an effective regulator of PTPN2 for treating diseases related to PTPN2.

Target Prediction Based On PPI Network

  • Lee, Taekeon;Hwang, Youhyeon;Oh, Min;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.65-71
    • /
    • 2016
  • To reduce the expenses for development a novel drug, systems biology has been studied actively. Target prediction, a part of systems biology, contributes to finding a new purpose for FDA(Food and Drug Administration) approved drugs and development novel drugs. In this paper, we propose a classification model for predicting novel target genes based on relation between target genes and disease related genes. After collecting known target genes from TTD(Therapeutic Target Database) and disease related genes from OMIM(Online Mendelian Inheritance in Man), we analyzed the effect of target genes on disease related genes based on PPI(Protein-Protein Interactions) network. We focused on the distinguishing characteristics between known target genes and random target genes, and used the characteristics as features for building a classifier. Because our model is constructed using information about only a disease and its known targets, the model can be applied to unusual diseases without similar drugs and diseases, while existing models for finding new drug-disease associations are based on drug-drug similarity and disease-disease similarity. We validated accuracy of the model using LOOCV of ten times and the AUCs were 0.74 on Alzheimer's disease and 0.71 on Breast cancer.

Retrospective analyses of the bottleneck in purification of eukaryotic proteins from Escherichia coli as affected by molecular weight, cysteine content and isoelectric point

  • Jeon, Won-Bae
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.319-324
    • /
    • 2010
  • Experimental bioinformatics data obtained from an E. coli cell-based eukaryotic protein purification experiment were analyzed in order to identify any bottleneck as well as the factors affecting the target purification. All targets were expressed as His-tagged maltose-binding protein (MBP) fusion constructs and were initially purified by immobilized metal affinity chromatography (IMAC). The targets were subsequently separated from the His-tagged MBP through TEV protease cleavage followed by a second IMAC isolation. Of the 743 total purification trials, 342 yielded more than 3 mg of target proteins for structural studies. The major reason for failure of target purification was poor TEV proteolysis. The overall success rate for target purification decreased linearly as cysteine content or isoelectric point (pI) of the target increased. This pattern of pI versus overall success rate strongly suggests that pI should be incorporated into target scoring criteria with a threshold value.

NMR Studies on Transient Protein Complexes: Perspectives

  • Suh, Jeong-Yong;Yu, Tae-Kyung;Yun, Young-Joo;Lee, Ko On
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • It is generally understood that protein-protein interactions proceed via transient encounter complexes that rapidly evolve into the functional stereospecific complex. Direct detection and characterization of the encounter complexes, however, been difficult due to their low population and short lifetimes. Recent application of NMR paramagnetic relaxation enhancement first visualized the structures of the encounter complex ensemble, and allowed the characterization of their physicochemical properties. Further, rational protein mutations that perturbed the encounter complex formation provided a clue to the target search pathway during protein-protein association. Understanding the structure and dynamics of encounter complexes will provide useful information on the mechanism of protein association.

Microbead based micro total analysis system for Hepatitis C detection (마이크로비드를 이용한 초소형 C형 간염 검출 시스템의 제작)

  • Sim, Tae-Seok;Lee, Bo-Rahm;Lee, Sang-Myung;Kim, Min-Soo;Lee, Yoon-Sik;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1629-1630
    • /
    • 2006
  • This paper describes a micro total analysis system ($\mu$ TAS) for detecting and digesting the target protein which includes a bead based temperature controllable microchip and computer based controllers for temperature and valve actuation. We firstly combined the temperature control function with a bead based microchip and realized the on-chip sequential reactions using two kinds of beads. The PEG-grafted bead, on which RNA aptamer was immobilized, was used for capturing and releasing the target protein. The target protein can be chosen by the type of RNA aptamer. In this paper, we used the RNA aptamer of HCV replicase. The trypsin coated bead was used for digesting the released protein prior to the matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI TOF MS). Heat is applied for release of the captured protein binding on the bead, thermal denaturation and trypsin digestion. PDMS microchannel and PDMS micro pneumatic valves were also combined for the small volume liquid handling. The entire procedures for the detection and the digestion of the target protein were successfully carried out on a microchip without any other chemical treatment or off-chip handling using $20\;{\mu}l$ protein mixture within 20 min. We could acquire six matched peaks (7% sequence coverage) of HCV replicase.

  • PDF

Antibiotic resistance in Neisseria gonorrhoeae: broad-spectrum drug target identification using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.5.1-5.13
    • /
    • 2023
  • Neisseria gonorrhoeae is a Gram-negative aerobic diplococcus bacterium that primarily causes sexually transmitted infections through direct human sexual contact. It is a major public health threat due to its impact on reproductive health, the widespread presence of antimicrobial resistance, and the lack of a vaccine. In this study, we used a bioinformatics approach and performed subtractive genomic methods to identify potential drug targets against the core proteome of N. gonorrhoeae (12 strains). In total, 12,300 protein sequences were retrieved, and paralogous proteins were removed using CD-HIT. The remaining sequences were analyzed for non-homology against the human proteome and gut microbiota, and screened for broad-spectrum analysis, druggability, and anti-target analysis. The proteins were also characterized for unique interactions between the host and pathogen through metabolic pathway analysis. Based on the subtractive genomic approach and subcellular localization, we identified one cytoplasmic protein, 2Fe-2S iron-sulfur cluster binding domain-containing protein (NGFG RS03485), as a potential drug target. This protein could be further exploited for drug development to create new medications and therapeutic agents for the treatment of N. gonorrhoeae infections.

Homology modeling of HSPA1L - METTL21A interaction

  • Lee, Seung-Jin;Cho, Art E.
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.90-95
    • /
    • 2016
  • Heat Shock 70kDa Protein 1-Like(HSPA1L)는 Heat-shock protein70(HSP70) family에 속하는 chaperone protein으로 polypeptide folding, assembly, protein degradation 등 다양한 biological processes에 관여하고 있다. HSPA1L은 human methyltransferase-like protein 21A(METTL21A)에 의해 lysine residue에 methylation이 일어나게 되는데, 암세포에서 일반적인 HSPA1L은 주로 세포질에서 발견되는 반면 methylated HSPA1L의 경우 주로 핵에서 발견이 됨으로써 HSPA1L methylation이 암 세포 성장에 중요할 역할을 할 것이라 추측되며 anti-cancer drug target으로 주목 받고 있다. 하지만 현재 HSPA1L의 구조가 부분적으로만 밝혀져 있어 HSPA1L와 METTL21A가 어떤 residue들이 interaction 하여 binding을 하는지에 대해서 아직 밝혀 지지 않았다. 이로 인해 anti-cancer drug target으로서의 연구에 제한이 있다. 이번 연구에서는 homology modeling(Galaxy-TBM, Galaxy-refine)을 통해 HSPA1L 전체 구조를 밝혀 낸 후, HSPA1L 와 METTL21A를 protein-protein docking을 통해 binding pose 예측을 하였다. 이러한 binding pose를 protein interaction analysis하여 HSPA1L과 METTL21A binding에 관여하는 중요 residue들을 밝혀 냈다. 이러한 structural information은 methylated HSPA1L와 암 세포 성장간의 연관성, 더 나아가 anti-cancer drug 개발로 까지도 이어 질 수 있을 것이라 생각한다.

  • PDF

Generation of Protein Lineages with new Sequence Spaces by Functional Salvage Screen

  • Kim, Geun-Joong;Cheon, Young-Hoon;Park, Min-Soon;Park, Hee-Sung;Kim, Hak-Sung
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.77-80
    • /
    • 2001
  • A variety of different methods to generate diverse proteins, including random mutagenesis and recombination, are currently available, and most of them accumulate the mutations on the target gene of a protein, whose sequence space remains unchanged. On the other hand, a pool of diverse genes, which is generated by random insertions, deletions, and exchange of the homologous domains with different lengths in the target gene, would present the protein lineages resulting in new fitness landscapes. Here we report a method to generate a pool of protein variants with different sequence spaces by employing green fluorescent protein (GFP) as a model protein. This process, designated functional salvage screen (FSS), comprises the following procedures: a defective GFP template expressing no fluorescence is firstly constructed by genetically disrupting a predetermined region(s) of the protein, and a library of GFP variants is generated from the defective template by incorporating the randomly fragmented genomic DNA from E. coli into the defined region(s) of the target gene, followed by screening of the functionally salvaged, fluorescence-emitting GFPs. Two approaches, sequence-directed and PCR-coupled methods, were attempted to generate the library of GFP variants with new sequences derived from the genomic segments of E. coli. The functionally salvaged GFPs were selected and analyzed in terms of the sequence space and functional property. The results demonstrate that the functional salvage process not only can be a simple and effective method to create protein lineages with new sequence spaces, but also can be useful in elucidating the involvement of a specific region(s) or domain(s) in the structure and function of protein.

  • PDF

Antimicrobial resistance in Klebsiella pneumoniae: identification of bacterial DNA adenine methyltransferase as a novel drug target from hypothetical proteins using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.47.1-47.13
    • /
    • 2022
  • Klebsiella pneumoniae is a gram-negative bacterium that is known for causing infection in nosocomial settings. As reported by the World Health Organization, carbapenem-resistant Enterobacteriaceae, a category that includes K. pneumoniae, are classified as an urgent threat, and the greatest concern is that these bacterial pathogens may acquire genetic traits that make them resistant towards antibiotics. The last class of antibiotics, carbapenems, are not able to combat these bacterial pathogens, allowing them to clonally expand antibiotic-resistant strains. Most antibiotics target essential pathways of bacterial cells; however, these targets are no longer susceptible to antibiotics. Hence, in our study, we focused on a hypothetical protein in K. pneumoniae that contains a DNA methylation protein domain, suggesting a new potential site as a drug target. DNA methylation regulates the attenuation of bacterial virulence. We integrated computational-aided drug design by using a bioinformatics approach to perform subtractive genomics, virtual screening, and fingerprint similarity search. We identified a new potential drug, koenimbine, which could be a novel antibiotic.