• 제목/요약/키워드: Target organ

검색결과 342건 처리시간 0.025초

호흡에 의해 내부 움직임을 갖는 장기에 전달되는 선량에서 Time Gating Threshold(TGT)의 효과 (An effect of time gating threshold (TGT) on a delivered dose in internal organ with movement due to respiration)

  • 김연래;정진범;서태석
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2004년도 제29회 추계학술대회 발표논문집
    • /
    • pp.132-135
    • /
    • 2004
  • 본 연구는 호흡시에 내부 장기가 움직일 때 시간에 따른 threshold 값을 주어졌을 때 선량분포에 대한 연구를 수행한 것이다. 이전 연구에서 보고 된 것처럼 일정 시간에 따라 움직이는 내부 장기의 움직임은 Rujan 등에 의해 보고된 3차원적 수학적 계산방법에 의해 장기의 위치를 나타내었다. 그 결과 처음exhale에서 1초동안 간의 움직임은 2mm이내에 위치하는 것을 알게 되었다. 그래서 이 연구에서 TGT는 간의 움직임이 가장 적은 처음 exhale에서 1초동안 움직일 때의 선량분포를 평가하였다. TGT 값을 주었을 때 선량분포를 비교하기 위해 다음 조건으로 방사선을 조사하였다. 1) threshold 범위에서 target이 움직일 때(1초, 1.5호), 2) threshold 없이 target이 움직일 때, 3) target이 움직이지 않을때. 각각 조건의 선량분포를 비교 평가하였다

  • PDF

Simulation and assessment of 99mTc absorbed dose into internal organs from cardiac perfusion scan

  • Saghar Salari;Abdollah Khorshidi;Jamshid Soltani-Nabipour
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.248-253
    • /
    • 2023
  • Directly, it is not possible to measure the absorbed dose of radiopharmaceuticals in the organs of the human body. Therefore, simulation methods are utilized to estimate the dose in distinct organs. In this study, individual organs were separately considered as the source organ or target organ to calculate the mean absorption dose, which SAF and S factors were then calculated according to the target uptake via MIRD method. Here, 99mTc activity distribution within the target was analyzed using the definition and simulation of ideal organs by summing the fraction of cumulative activities of the heart as source organ. Thus, GATE code was utilized to simulate the Zubal humanoid phantom. To validate the outcomes in comparison to the similar results reported, the accumulation of activity in the main organs of the body was calculated at the moment of injection and cardiac rest condition after 60 min of injection. The results showed the highest dose absorbed into pancreas was about 21%, then gallbladder 18%, kidney 16%, spleen 15%, heart 8%, liver 8%, thyroid 7%, lungs 5% and brain 2%, respectively, after 1 h of injection. This distinct simulation model may also be used for different periods after injection and modifying the prescribed dose.

Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

  • Jung, Nuri Hyun;Shin, Youngseob;Jung, In-Hye;Kwak, Jungwon
    • Radiation Oncology Journal
    • /
    • 제33권3호
    • /
    • pp.226-232
    • /
    • 2015
  • Purpose: Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods: Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results: With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion: RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.

Function of Multimeric MADS Protein Complexes in Floral Organ Development of Plant

  • Park, Ji-Im;Moon, Yong-Hwan
    • Journal of Photoscience
    • /
    • 제12권3호
    • /
    • pp.163-169
    • /
    • 2005
  • Recent reports suggest that floral organs such as sepals, petals, stamens, and carpels are specified by quaternary MADS protein complexes with different combinations. The formation of quaternary complexes of ABCDE MADS proteins may be the molecular basis of ABCDE model for the floral organ development. The MADS complexes involved in each floral organ development seem to be conserved in at least dicot species although detailed molecular mechanism is slightly different depending on species. Even in monocot, at least rice, MADS complexes similar to those in dicot exist, suggesting that the floral organ specification by MADS protein complexes may be conserved in most of plants. The MADS protein complexes may have more specific recognition of target genes or more transcription activation ability than monomers or dimers, resulting in finely regulated floral organ development.

  • PDF

유방촬영 시 몬테칼로 전사모사를 이용한 유방 성형 환자의 장기선량 평가 (Assessment of Organ Dose in Mammoplasty Patient by Monte Carlo Simulation during Mammography)

  • 김지수;조용인;김정훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권5호
    • /
    • pp.337-341
    • /
    • 2020
  • Although the screening with a mammography has been shown to be economical, simple and effective in detecting breast cancer, it is accompanied by the risk from radiation. Therefore, this study analyzed the glandular dose and organ dose according to the target-filter combination and the presence and absence of implants using Monte Carlo simulation. The results indicate that at a tube voltage of 30 kV and a tube current of 50 mAs, the dose increased in the order of Mo/Mo. Mo/Rh, Rh/Rh and W/Rh in proportion to the atomic number of the target-filter. In addition, in phantom without implant a reduction in dose was seen when compared to the phantom with implant. The organ dose was highest in the lens except for the breast on the examination side regardless of the presence or absence of the implant. These results may contribute to use basic data for the diagnostic reference level of breast plastic surgery patients.

TOMO HDA와 Radixact 치료 계획 간 Transfer에 대한 유용성 평가 : Planning Study (Usability Assessment of Plan Transfer between TOMO HAD and Radixact : Planning Study)

  • 안예찬;김종식;권동열;김진만;최병기
    • 대한방사선치료학회지
    • /
    • 제30권1_2호
    • /
    • pp.117-128
    • /
    • 2018
  • 목 적 : iDMS(Integrated Database Management System, 통합 데이터베이스 관리 시스템) 내 TOMOTHERAPY 치료 계획을 ACCURAY $Precision^{TM}$ 1.1.1.1을 이용하여 본원의 TOMO HDA와 Radixact 장비 간 Transfer하였고 선량학적 차이를 분석하였으며, 이를 통해 치료 계획 Transfer의 유용성을 평가하였다. 대상 및 방법 : 두경부암 두 부위와 전립선암 두 부위의 치료를 가정하여 4개의 서로 다른 치료 계획을 세웠다. 각 치료 계획은 95 % 처방선량(Prescription dose)이 표적 체적의 99 % 이상 조사되도록 설계하였고, 정상장기 선량은 SMC tolerance dose protocol을 기준으로 하였다. 수립된 치료 계획은 각 장비로 Transfer 시켰으며 Transfer된 치료 계획의 DVH(Dose Volume Histogram) 분석을 통해 선량학적 차이를 비교 평가하였다. 결 과 : Transfer된 치료 계획에서 CTV 및 GTV의 Mean Dose는 증가 및 감소하였으나 유의할 만한 차이는 보이지 않았다. CTV 및 GTV 처방 선량의 Target Coverage는 HDA에서 Radixact로 Trasnfer 시 전부 감소하였으며, CTV에 대한 CI 및 HI 변화도 0.1 이내였다. Normal Organ Dose는 두 치료 계획 모두 HDA에서 Radixact로 Transfer 시 대부분의 항목에서 선량이 증가하였다. 결 론 : 본 실험의 결과에 따르면 Radixact에서 HDA 장비로 치료 계획 Transfer 시 Target Coverage는 기준 이상이었으며 Normal Organ Dose 또한 대부분 같거나 감소하였다. HDA에서 Radixact로 치료 계획 Transfer 시 Target의 Coverage는 감소하는 경향을 보였고, Normal Organ Dose는 Optic Chiasm($D_{max}$ 1.38 Gy 증가), Bladder($D_{max}$ 3.07 Gy 증가), Penile Bulb($D_{max}$ 1.14 Gy 증가) 등 부작용(side effects)을 일으킬 수 있는 장기에서 선량이 증가였다. 이에 따라 치료 계획 Transfer 시 선량 변화에 주의해야 하며 장비 점검으로 인한 일회성 Transfer는 효율적인 방사선 치료를 위해 유용할 것이나, Transfer된 치료 계획으로 치료가 수회간 이어질 경우 치료 계획을 다시 세워 진행해야 할 것으로 사료된다.

  • PDF

Measurement of Variation in Water Equivalent Path Length by Respiratory Organ Movement

  • Minohara, Shinichi;Kanai, Tatsuaki;Endo, Masahiro;Kato, Hirotoshi;Miyamoto, Tadaaki;Tsujii, Hirohiko
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.90-93
    • /
    • 2002
  • In particle radiotherapy, a shape of the beam to conform the irradiation field is statically defined by the compensator, collimator and potal devices at the outside of the patient body. However the target such as lung or liver cancer moves along with respiration. This increases the irradiated volume of normal tissue. Prior discussions about organ motions along with respiration have been mainly focused on inferior-superior movement that was usually perpendicular to beam axis. On the other hand, the change of the target depth along the beam axis is very important especially in particle radiotherapy, because the range end of beam (Bragg peak) is so sharp as to be matched to distal edge of the target. In treatment planning, the range of the particle beam inside the body is calculated using a calibration curve relating CT number and water equivalent path length (WEL) to correct the inhomogeneities of tissues. The variation in CT number along the beam path would cause the uncertainties of range calculation at treatment planning for particle radiotherapy. To estimate the uncertainties of the range calculation associated with patient breathing, we proposed the method using sequential CT images with respiration waveform, and analyzed organ motions and WELs at patients that had lung or liver cancer. The variation of the depth along the beam path was presented in WEL rather than geometrical length. In analyzed cases, WELs around the diaphragm were remarkably changed depending on the respiration, and the magnitude of these WEL variations was almost comparable to inferior-superior movement of diaphragm. The variation of WEL around the lung was influenced by heartbeat.

  • PDF

Evaluation of Dynamic Delivery Quality Assurance Process for Internal Target Volume Based RapidArc

  • Song, Ju-Young
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.181-189
    • /
    • 2017
  • The conventional delivery quality assurance (DQA) process for RapidArc (Varian Medical Systems, Palo Alto, USA), has the limitation that it measures and analyzes the dose in a phantom material and cannot analyze the dosimetric changes under the motional organ condition. In this study, a DQA method was designed to overcome the limitations of the conventional DQA process for internal target volume (ITV) based RapidArc. The dynamic DQA measurement device was designed with a moving phantom that can simulate variable target motions. The dose distribution in the real volume of the target and organ-at-risk (OAR)s were reconstructed using 3DVH with the ArcCHECK (SunNuclear, Melbourne, USA) measurement data under the dynamic condition. A total of 10 ITV-based RapidArc plans for liver-cancer patients were analyzed with the designed dynamic DQA process. The average pass rate of gamma evaluation was $81.55{\pm}9.48%$ when the DQA dose was measured in the respiratory moving condition of the patient. Appropriate method was applied to correct the effect of moving phantom structures in the dose calculation, and DVH data of the real volume of target and OARs were created with the recalculated dose by the 3DVH program. We confirmed the valid dose coverage of a real target volume in the ITV-based RapidArc. The variable difference of the DVH of the OARs showed that dose variation can occur differently according to the location, shape, size and motion range of the target. The DQA process devised in this study can effectively evaluate the DVH of the real volume of the target and OARs in a respiratory moving condition in addition to the simple verification of the accuracy of the treatment machine. This can be helpful to predict the prognosis of treatment by the accurate dose analysis in the real target and OARs.

Development of Radiopharmaceutical DW-166HC for Anticancer drug

  • Man, Ryu-Jei
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1999년도 춘계학술대회
    • /
    • pp.53-61
    • /
    • 1999
  • Radiation therapy has been used for the cancer treatment and radiation synovectomy$\^$1-3)/. There are two kinds of radiation therapy; the external radiation therapy and the internal radiation therapy. Hitherto, the external radiation therapy has been widely used, but for the lack of its selectivity it requires strong radiation dose and causes the irritation and damage of the normal tissue or organ. Therefore many researchers give their interests to the internal radiation therapy in which the radioactive materials are injected directly into the target organ or tissue. Many ${\beta}$-emitting radionuclides have been studied for the application of the internal radiation theraily. Among them, Holmium-166 has the many beneficial physical characteristics for the internal radiation therapy such as appropriate half life (26.8hr), high ${\beta}$ energy (max. 1.85 MeV(51%), 1.77 MeV (48%), mean 0.67MeV), and low ${\gamma}$ energy (0.081MeV) easily detected by ${\gamma}$-camera. In the internal radiation therapy, the administered radioactive materials should be retained in the target long enough to increase the therapeutic effects and avoid the damage in the normal tissue or organ. For this purpose, radionuclides are used as complex form with carriers. Carriers should have a high affinity with radionuclides in vivo and in vitro, so the complex can be evenly distributed in the lesion but can not be leaked out from the lesion.

  • PDF

Management of Feline Idiopathic Hypertension with Target Organ Damage: A Case Report

  • Lee, Ji-Hye;Kim, Jihee;Kim, Yoonji;Kim, Soomin;Kim, Hyeon-Jin;Kim, Ha-Jung
    • 한국임상수의학회지
    • /
    • 제38권4호
    • /
    • pp.189-193
    • /
    • 2021
  • An 11-years old spayed female Persian chinchilla cat presented with acute onset of blindness from bilateral retinal detachment and systemic hypertension. On physical examination, the cat was tachycardic (240 beats/min) with a systolic blood pressure of around 250 mmHg. Clinical findings, blood works, urinalysis, thyroid function test, radiography, echocardiogram, and ultrasonography were performed to rule out underlying diseases. Organ injury induced by systemic hypertension including bilateral retinal detachment and left ventricular hypertrophy were confirmed by ultrasound. Based on these results, it was diagnosed as feline idiopathic hypertension with target organ damage (TOD). The cat was treated with a combination therapy using high doses of amlodipine, telmisartan, and atenolol. After the treatment, its hypertension and TOD were improved. This case showed that appropriate therapeutic management can help prevent TOD associated with feline hypertension.