• 제목/요약/키워드: Target geometry modeling

검색결과 16건 처리시간 0.019초

건축물 평면 형상 역설계 자동화를 위한 Scan-to-Geometry 맵핑 규칙 정의 (Scan-to-Geometry Mapping Rule Definition for Building Plane Reverse engineering Automation)

  • 강태욱
    • 한국BIM학회 논문집
    • /
    • 제9권2호
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, many scan projects are gradually increasing for maintenance, construction. The scan data contains useful data, which can be generated in the target application from the facility, space. However, modeling the scan data required for the application requires a lot of cost. In example, the converting 3D point cloud obtained from scan data into 3D object is a time-consuming task, and the modeling task is still very manual. This research proposes Scan-to-Geometry Mapping Rule Definition (S2G-MD) which maps point cloud data to geometry for irregular building plane objects. The S2G-MD considers user use case variability. The method to define rules for mapping scan to geometry is proposed. This research supports the reverse engineering semi-automatic process for the building planar geometry from the user perspective.

항공용 가스터빈 연소기에서의 혼합기 노즐 형상의 단순화가 음향장 해석 결과에 미치는 영향 (Effects of a Simplified Mixture Nozzle Geometry on the Acoustic Field in an Aero Gas Turbine Combustor)

  • 표영민;홍수민;김대식
    • 한국분무공학회지
    • /
    • 제24권2호
    • /
    • pp.58-65
    • /
    • 2019
  • A 3D FEM (Finite Element Method) based Helmholtz solver has been commonly used to characterize fundamental acoustic behavior and investigate dynamic instability features in many combustion systems. In this approach, a geometrical simplification of the target system has been generally made in order to reduce computational time and cost because a real combustor and fuel nozzle have a very complicated flow passage. The feasibility of these simplifications is quantitatively investigated in a small aero gas turbine nozzle in term of acoustic characteristics. It is found that the simplification in a nozzle geometry during the 3D FEM analysis process has no great influence on the acoustic modeling results, while the calculation complexity can be improved for a similar modeling accuracy.

지상전투차량 취약성 평가를 위한 표적 모델링과 피격선 분석 시스템 (The Target Modeling and The Shot Line Analysis System to Assess Vulnerability of the Ground Combat Vehicle)

  • 유철;장은수;박강;최상영
    • 한국CDE학회논문집
    • /
    • 제20권3호
    • /
    • pp.238-245
    • /
    • 2015
  • Vulnerability assessment is a process to calculate the damage degree of a combat vehicle when the combat vehicle is attacked by an enemy. When the vehicle is hit, it is necessary to analyze the shot line to calculate which components are damaged and judge whether the armor of the vehicle is penetrated by enemy's warhead. To analyze the shot line efficiently, this paper presents the target modeling and the shot line analysis system to assess vulnerability of the ground combat vehicle. This system is easily able to do several functions: 1) the program reads STL files converted from CAD model which is designed by commercial CAD software. 2) It calculates the intersection between triangle of STL mesh and the shot line, and check if the components of the model are penetrated. 3) This program can visualize the results using OpenGL. The vulnerability assessment using the shot line analysis can be used to model the armor of the combat vehicle and arrange the inner components effectively in the early stage of development of the combat vehicle.

Uncalibrated Visual Servoing through the Efficient Estimation of the Image Jacobian for Large Residual

  • Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.385-392
    • /
    • 2013
  • An uncalibrated visual servo control method for tracking a target is presented. We define the robot-positioning problem as an unconstrained optimization problem to minimize the image error between the target feature and the robot end-effector feature. We propose a method to find the residual term for more precise modeling using the secant approximation method. The composite image Jacobian is estimated by the proper method for eye-to-hand configuration without knowledge of the kinematic structure, imaging geometry and intrinsic parameter of camera. This method is independent of the motion of a target feature. The algorithm for regulation of the joint velocity for safety and stability is presented using the cost function. Adaptive regulation for visibility constraints is proposed using the adaptive parameter.

Automatic indoor progress monitoring using BIM and computer vision

  • Deng, Yichuan;Hong, Hao;Luo, Han;Deng, Hui
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.252-259
    • /
    • 2017
  • Nowadays, the existing manual method for recording actual progress of the construction site has some drawbacks, such as great reliance on the experience of professional engineers, work-intensive, time consuming and error prone. A method integrating computer vision and BIM(Building Information Modeling) is presented for indoor automatic progress monitoring. The developed method can accurately calculate the engineering quantity of target component in the time-lapse images. Firstly, sample images of on-site target are collected for training the classifier. After the construction images are identified by edge detection and classifier, a voting algorithm based on mathematical geometry and vector operation will divide the target contour. Then, according to the camera calibration principle, the image pixel coordinates are conversed into the real world Coordinate and the real coordinates would be corrected with the help of the geometric information in BIM model. Finally, the actual engineering quantity is calculated.

  • PDF

LQ기법을 이용한 수중 운동체의 마지막(terminal) 유도 알고리즘 설계 (Design of terminal guidance algorithm for underwater vehicles using LQ technique)

  • 김삼수;이갑래;이재명;전완수;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.620-628
    • /
    • 1991
  • For a Stationary moving-target. the design technique of guidance system for underwater vehicle with a seeker of st type is developed. Using perturbation theory, a new method which linearizes the nonlinear intercept geometry is proposed. On the basis of the linearized system modeling, LQ and PID design technique is used to determine the structure and gain of the guidance system. Some simulation results applied underwater engagement are represented to show that the proposed guidance law is superior to the other guidance laws as pursuit, Bang-Beng, PN APN.

  • PDF

9-DOF 낙하산 모델링 및 선회비행 시뮬레이션 검증 (9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute)

  • 이상종;민병문
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.688-693
    • /
    • 2016
  • 본 논문에서는 현재 고고도 이탈 및 저고도 개산강하(HALO, High Altitude Low Opening)용으로 사용하고 있는 군용 낙하산의 훈련 시뮬레이터 개발을 위해 필요한 낙하산 모델링 및 시뮬레이션 결과를 정리하였다. 대상인 군용 낙하산은 파라포일(Parafoil) 형태의 사각 낙하산으로 원형 낙하산과는 달리 강하자가 조종을 통해 원하는 위치로 유도할 수 있는 기동성이 뛰어나 공수부대원들의 적진 침투시에 주로 이용된다. 실재 낙하산의 형상자료를 이용하여 파라포일과 낙하물의 질점 모델을 기반으로 9-자유도 비선형 운동방정식을 유도하고, 각각의 관성모멘트와 공력 미계수를 산출하여 MATLAB/Simulink 기반의 비선형 시뮬레이션을 수행하여 그 결과를 나타내었다. 특히 낙하산과 같은 공기부양(LTA, Lighter-Than-Air) 비행체는 일반적인 항공기 비선형 운동과 달리 부가질량(Added Mass) 및 부가 관성모멘트(Added Moment of Inertia)의 효과가 크기 때문에 이에 대한 경험수식을 바탕으로 동역학 모델링에 포함하여 고려하였다. 수행된 낙하산 운동 모델링의 검증을 위해 비대칭 조종입력을 통한 나선형 강하 비행조건을 시뮬레이션하여 대상 군용 낙하산에서 제시된 실재 성능값과 시뮬레이션 결과치를 비교하여 유도된 운동모델이 타당함을 검증하고 그 결과를 나타내었다.

CAD/CAE 적응을 위한 근사 서브디비전 방법의 고찰 (Study on approximating subdivision schemes for the application to CAD/CAE)

  • 서홍석;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.237-243
    • /
    • 2002
  • Recently, in computer-aided geometric modeling(CAGD), subdivision surfaces are frequently employed to construct free-form surface. Subdivision schemes have been very popular in computer graphics and animation community, but the community of CAGD adopts this tool only recently to handle surface geometry. In the present study, Loop scheme and Catmull-Clark scheme are applied to generate smooth surfaces. To be consistent with the limit points of target surface, the initial sampling points are properly rearranged. The pointwise curvature errors and coordinate value errors between the points in the sequence of subdivision process and the points on the target surface are evaluated In the numerical examples in both Loop scheme & Catmull-Clark subdivision scheme.

  • PDF

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • 제34권1호
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

바이스태틱 ISAR 영상 생성 시뮬레이션 (Simulation of Bistatic Inverse Synthetic Aperture Radar Image Generation)

  • 한승구;김경태;양은정
    • 한국전자파학회논문지
    • /
    • 제25권4호
    • /
    • pp.451-458
    • /
    • 2014
  • 본 논문은 송신 레이더와 수신 레이더의 위치가 서로 다른 바이스태틱 기하 구조에서의 ISAR(Inverse Synthetic Apeture Radar) 영상 생성 기법에 대해 연구하였다. 모노스태틱 ISAR는 레이더의 LOS(Line of Sight) 방향으로 진행하는 표적에 대해 LOS의 수직 방향으로 충분한 해상도를 얻기 힘들고, 스텔스 표적의 탐지에도 적합하지 않다. 바이스태틱 ISAR는 이러한 모노스태틱 ISAR의 단점을 해결할 수 있다. 바이스태틱 기하 구조와 신호 모델링, 바이스태틱 도플러 등의 바이스태틱 ISAR 영상을 얻기 위한 과정을 소개하였다. 시뮬레이션을 통해 표적의 이동 시나리오에 따른 모노스태틱 ISAR 영상과 바이스태틱 ISAR 영상을 생성 후 각 시나리오마다 영상의 차이를 비교 분석하였다.