• 제목/요약/키워드: Target gene mutation

검색결과 70건 처리시간 0.028초

Molecular Mechanisms of Succinate Dehydrogenase Inhibitor Resistance in Phytopathogenic Fungi

  • Sang, Hyunkyu;Lee, Hyang Burm
    • 식물병연구
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2020
  • The succinate dehydrogenase inhibitor (SDHI) is a class of fungicides, which is widely and rapidly used to manage fungal pathogens in the agriculture field. Currently, fungicide resistance to SDHIs has been developed in many different plant pathogenic fungi, causing diseases on crops, fruits, vegetables, and turf. Understanding the molecular mechanisms of fungicide resistance is important for effective prevention and resistance management strategies. Two different mechanisms have currently been known in SDHI resistance. The SDHI target genes, SdhB, SdhC, and SdhD, mutation(s) confer resistance to SDHIs. In addition, overexpression of ABC transporters is involved in reduced sensitivity to SDHI fungicides. In this review, the current status of SDHI resistance mechanisms in phytopathogenic fungi is discussed.

Common Docking Domain Mutation E322K of the ERK2 Gene is Infrequent in Oral Squamous Cell Carcinomas

  • Valiathan, Gopalakrishnan Mohan;Thenumgal, Siji Jacob;Jayaraman, Bhaskar;Palaniyandi, Arunmozhi;Ramkumar, Hemalatha;Jayakumar, Keerthivasan;Bhaskaran, Sajeev;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6155-6157
    • /
    • 2012
  • Background: Mutations in the MAPK (Mitogen Activated Protein Kinase) signaling pathway - EGFR/Ras/RAF/MEK have been associated with the development of several carcinomas. ERK2, a downstream target of the MAPK pathway and a founding member of the MAPK family is activated by cellular signals emanating at the cell membrane. Activated ERK2 translocates into the nucleus to transactivate genes that promote cell proliferation. MKP - a dual specific phosphatase - interacts with activated ERK2 via the common docking (CD) domain of the later to inactivate (dephosphorylate) and effectively terminate further cell proliferation. A constitutively active form of ERK2 carrying a single point mutation - E322K in its CD domain, was earlier reported by our laboratory. In the present study, we investigated the prevalence of this CD domain E322K mutation in 88 well differentiated OSCC tissue samples. Materials and Method: Genomic DNA specimens isolated from 88 oral squamous cell carcinoma tissue samples were amplified with primers flanking the CD domain of the ERK2 gene. Subsequently, PCR amplicons were gel purified and subjected to direct sequencing to screen for mutations. Results: Direct sequencing of eighty eight OSCC samples identified an E322K CD domain mutation in only one (1.1%) OSCC sample. Conclusions: Our result indicates that mutation in the CD domain of ERK2 is rare in OSCC patients, which suggests the role of genetic alterations in other mitogenic genes in the development of carcinoma in the rest of the patients. Nevertheless, the finding is clinically significant, as the relatively rare prevalence of the E322K mutation in OSCC suggests that ERK2, being a common end point signal in the multi-hierarchical mitogen activated signaling pathway may be explored as a viable drug target in the treatment of OSCC.

Applications of Transposon-Based Gene Delivery System in Bacteria

  • Choi, Kyoung-Hee;Kim, Kang-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권3호
    • /
    • pp.217-228
    • /
    • 2009
  • Mobile genetic segments, or transposons, are also referred to as jumping genes as they can shift from one position in the genome to another, thus inducing a chromosomal mutation. According to the target site-specificity of the transposon during a transposition event, the result is either the insertion of a gene of interest at a specific chromosomal site, or the creation of knockout mutants. The former situation includes the integration of conjugative transposons via site-specific recombination, several transposons preferring a target site of a conserved AT-rich sequence, and Tn7 being site-specifically inserted at attTn7, the downstream of the essential glmS gene. The latter situation is exploited for random mutagenesis in many prokaryotes, including IS (insertion sequence) elements, mariner, Mu, Tn3 derivatives (Tn4430 and Tn917), Tn5, modified Tn7, Tn10, Tn552, and Ty1, enabling a variety of genetic manipulations. Randomly inserted transposons have been previously employed for a variety of applications such as genetic footprinting, gene transcriptional and translational fusion, signature-tagged mutagenesis (STM), DNA or cDNA sequencing, transposon site hybridization (TraSH), and scanning linker mutagenesis (SLM). Therefore, transposon-mediated genetic engineering is a valuable discipline for the study of bacterial physiology and pathogenesis in living hosts.

Mutational Analysis of Key EGFR Pathway Genes in Chinese Breast Cancer Patients

  • Tong, Lin;Yang, Xue-Xi;Liu, Min-Feng;Yao, Guang-Yu;Dong, Jian-Yu;Ye, Chang-Sheng;Li, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5599-5603
    • /
    • 2012
  • Background: The epidermal growth factor receptor (EGFR) is a potential therapeutic target for breast cancer treatment; however, its use does not lead to a marked clinical response. Studies of non-small cell lung cancer and colorectal cancer showed that mutations of genes in the PIK3CA/AKT and RAS/RAF/MEK pathways, two major signalling cascades downstream of EGFR, might predict resistance to EGFR-targeted agents. Therefore, we examined the frequencies of mutations in these key EGFR pathway genes in Chinese breast cancer patients. Methods: We used a high-throughput mass-spectrometric based cancer gene mutation profiling platform to detect 22 mutations of the PIK3CA, AKT1, BRAF, EGFR, HRAS, and KRAS genes in 120 Chinese women with breast cancer. Results: Thirteen mutations were detected in 12 (10%) of the samples, all of which were invasive ductal carcinomas (two stage I, six stage II, three stage III, and one stage IV). These included one mutation (0.83%) in the EGFR gene (rs121913445-rs121913432), three (2.50%) in the KRAS gene (rs121913530, rs112445441), and nine (7.50%) in the PIK3CA gene (rs121913273, rs104886003, and rs121913279). No mutations were found in the AKT1, BRAF, and HRAS genes. Six (27.27%) of the 22 genotyping assays called mutations in at least one sample and three (50%) of the six assays queried were found to be mutated more than once. Conclusions: Mutations in the EGFR pathway occurred in a small fraction of Chinese breast cancers. However, therapeutics targeting these potential predictive markers should be investigated in depth, especially in Oriental populations.

닭 도축장에서 분리한 nalidixic acid 내성 Salmonella 균의 gyrA 유전자 돌연변이 (Mutation in gyrA gene of nalidixic acid-resistant Salmonella isolates isolated from poultry slaughterhouse)

  • 조재근;손규희;김경희;김정미;박대현;이정우
    • 한국동물위생학회지
    • /
    • 제42권3호
    • /
    • pp.153-159
    • /
    • 2019
  • The objective of this study was to identify mutations in the quinolone resistance determining region (QRDR) of the gyrA, gyrB, parC and parE genes, and the presence of plasmid-mediated quinolone resistance (PMQR) genes: qnrA, qnrB, qnrS, aac(6')-lb-cr and qepA in 40 nalidixic acid- resistant ($NA^R$) Salmonella isolates isolated from poultry slaughterhouse. The MIC of NA and ciprofloxacin for 40 $NA^R$ Salmonella isolates was $128{\sim}512{\mu}g/mL$ and < $0.125{\sim}0.25{\mu}g/mL$, respectively. The Salmonella isolates were resistant to NA (100%), gentamicin (5.0%) and ampicillin (2.5%). All $NA^R$ Salmonella isolates represented point mutation in codons Aspartic acid(Asp)-87 (90%) and Serine(Ser)-83 (10%) of QRDR of gyrA gene: $Asp87{\rightarrow}glycine$, $Ser83{\rightarrow}tyrosine$. No mutations were observed in QRDR of the gyrB, parC and parE gene. Moreover PMQR genes was not found in any of the tested isolates. Our findings showed that DNA gyrase is the primary target of quinolone resistance and a single mutation in codon Asp87 and Ser83 of the gyrA gene can confer resistance to NA and reduced susceptibility ciprofloxacin in Salmonella isolates.

Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson's disease

  • Seol, Won-Gi
    • BMB Reports
    • /
    • 제43권4호
    • /
    • pp.233-244
    • /
    • 2010
  • Parkinson's disease (PD) is the second most common neurodegenerative disease, and 5-10% of the PD cases are genetically inherited as familial PD (FPD). LRRK2 (leucine-rich repeat kinase 2) was first reported in 2004 as a gene corresponding to PARK8, an autosomal gene whose dominant mutations cause familial PD. LRRK2 contains both active kinase and GTPase domains as well as protein-protein interaction motifs such as LRR (leucine-rich repeat) and WD40. Most pathogenic LRRK2 mutations are located in either the GTPase or kinase domain, implying important roles for the enzymatic activities in PD pathogenic mechanisms. In comparison to other PD causative genes such as parkin and PINK1, LRRK2 exhibits two important features. One is that LRRK2's mutations (especially the G2019S mutation) were observed in sporadic as well as familial PD patients. Another is that, among the various PD-causing genes, pathological characteristics observed in patients carrying LRRK2 mutations are the most similar to patients with sporadic PD. Because of these two observations, LRRK2 has been intensively investigated for its pathogenic mechanism (s) and as a target gene for PD therapeutics. In this review, the general biochemical and molecular features of LRRK2, the recent results of LRRK2 studies and LRRK2's therapeutic potential as a PD target gene will be discussed.

Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect

  • Lee, Jeong Hyo;Kim, Si Won;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권5호
    • /
    • pp.743-748
    • /
    • 2017
  • Objective: Based on rapid advancement of genetic modification techniques, genomic editing is expected to become the most efficient tool for improvement of economic traits in livestock as well as poultry. In this study, we examined and verified the nickase of mutated CRISPR-associated protein 9 (Cas9) to modulate the specific target gene in chicken DF1 cells. Methods: Chicken myostatin which inhibits muscle cell growth and differentiation during myogenesis was targeted to be deleted and mutated by the Cas9-D10A nickase. After co-transfection of the nickase expression vector with green fluorescent gene (GFP) gene and targeted multiplex guide RNAs (gRNAs), the GFP-positive cells were sorted out by fluorescence-activated cell sorting procedure. Results: Through the genotyping analysis of the knockout cells, the mutant induction efficiency was 100% in the targeted site. Number of the deleted nucleotides ranged from 2 to 39 nucleotide deletion. There was no phenotypic difference between regular cells and knockout cells. However, myostatin protein was not apparently detected in the knockout cells by Western blotting. Additionally, six off-target sites were predicted and analyzed but any non-specific mutation in the off-target sites was not observed. Conclusion: The knockout technical platform with the nickase and multiplex gRNAs can be efficiently and stablely applied to functional genomics study in poultry and finally adapted to generate the knockout poultry for agribio industry.

Label/Quencher-Free Detection of Exon Deletion Mutation in Epidermal Growth Factor Receptor Gene Using G-Quadruplex-Inducing DNA Probe

  • Kim, Hyo Ryoung;Lee, Il Joon;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.72-76
    • /
    • 2017
  • Detection of exon 19 deletion mutation in the epidermal growth factor receptor (EGFR) gene, which results in increased and sustained phosphorylation of EGFR, is important for diagnosis and treatment guidelines in non-small-cell lung cancer. Here, we have developed a simple and convenient detection system using the interaction between G-quadruplex and fluorophore thioflavin T (ThT) for discriminating EGFR exon 19 deletion mutant DNA from wild type without a label and quencher. In the presence of exon 19 deletion mutant DNA, the probe DNAs annealed to the target sequences were transformed into G-quadruplex structure. Subsequent intercalation of ThT into the G-quadruplex resulted in a light-up fluorescence signal, which reflects the amount of mutant DNA. Due to stark differences in fluorescence intensity between mutant and wild-type DNA, we suggest that the induced G-quadruplex structure in the probe DNA can report the presence of cancer-causing deletion mutant DNAs with high sensitivity.

c-KIT Positive Schistosomal Urinary Bladder Carcinomas are Frequent but Lack KIT Gene Mutations

  • Shams, Tahany M.;Metawea, Mokhtar;Salim, Elsayed I.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.15-20
    • /
    • 2013
  • Urinary bladder squamous cell carcinoma (SCC), one of the most common neoplasms in Egypt, is attributed to chronic urinary infection with Schistosoma haematobium (Schistosomiasis). The proto-oncogene c-KIT, encoding a tyrosine kinase receptor and implicated in the development of a number of human malignancies, has not been studied so far in schistosomal urinary bladder SCCs. We therefore determined immunohistochemical (IHC) expression of c-KIT in paraffin sections from 120 radical cystectomies of SCCs originally obtained from the Pathology Department of Suez Canal University (Ismailia, Egypt). Each slide was evaluated for staining intensity where the staining extent of >10% of cells was considered positive. c-KIT overexpression was detected in 78.3% (94/120) of the patients, the staining extents in the tumor cells were 11-50% and >50% in 40 (42.6%) and 54 (57.4%) respectively. The positive cases had 14.9%, 63.8%, 21.3% as weak, moderate and strong intensity respectively. Patients with positive bilharzial ova had significantly higher c-KIT expression than patients without (95.2% vs. 38.9%, P=0.000). Mutation analysis of exons 9-13 was negative in thirty KIT positive cases. The high rate of positivity in SBSCC was one of the striking findings; However, CD117 may be a potential target for site specific immunotherapy to improve the outcome of this tumor.

Prevelance of Common YMDD Motif Mutations in Long Term Treated Chronic HBV Infections in a Turkish Population

  • Alagozlu, Hakan;Ozdemir, Ozturk;Koksal, Binnur;Yilmaz, Abdulkerim;Coskun, Mahmut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5489-5494
    • /
    • 2013
  • In the current study we aimed to show the common YMDD motif mutations in viral polymerase gene in chronic hepatitis B patients during lamivudine and adefovir therapy. Forty-one serum samples obtained from chronic hepatitis B patients (24 male, 17 female; age range: 34-68 years) were included in the study. HBV-DNA was extracted from the peripheral blood of the patients using an extraction kit (Invisorb, Instant Spin DNA/RNA Virus Mini Kit, Germany). A line probe assay and direct sequencing analyses (INNO-LIPA HBV DR v2; INNOGENETICS N.V, Ghent, Belgium) were applied to determine target mutations of the viral polymerase gene in positive HBV-DNA samples. A total of 41 mutations located in 21 different codons were detected in the current results. In 17 (41.5%) patients various point mutations were detected leading to lamivudin, adefovir and/or combined drug resistance. Wild polymerase gene profiles were detected in 24 (58.5%) HBV positive patients of the current cohort. Eight of the 17 samples (19.5%) having rtM204V/I/A missense transition and/or transversion point mutations and resistance to lamivudin. Six of the the mutated samples (14.6%) having rtL180M missense transversion mutation and resistance to combined adefovir and lamivudin. Three of the mutated samples (7.5%) having rtG215H by the double base substituation and resistance to adefovir. Three of the mutated samples (7.5%) having codon rtL181W due to the missense transversion point mutations and showed resistance to combined adefovir and lamivudin. Unreported novel point mutations were detected in the different codons of polymerase gene region in the current HBV positive cohort fromTurkish population. The current results provide evidence that rtL180M and rtM204V/I/A mutations of HBV-DNA may be associated with a poor antiviral response and HBV chronicity during conventional therapy in Turkish patients.