• 제목/요약/키워드: Target gene mutation

검색결과 70건 처리시간 0.029초

포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay (In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells)

  • 류재천;김경란;최윤정
    • 한국환경성돌연변이발암원학회지
    • /
    • 제19권1호
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

Insight into Norfloxacin Resistance of Acinetobacter oleivorans DR1: Target Gene Mutation, Persister, and RNA-Seq Analyses

  • Kim, Jisun;Noh, Jaemin;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1293-1303
    • /
    • 2013
  • Antibiotic resistance of soilborne Acinetobacter species has been poorly explored. In this study, norfloxacin resistance of a soil bacterium, Acinetobacter oleivorans DR1, was investigated. The frequencies of mutant appearance of all tested non-pathogenic Acinetobacter strains were lower than those of pathogenic strains under minimum inhibitory concentration (MIC). When the quinolone-resistance-determining region of the gyrA gene was examined, only one mutant (His78Asn) out of 10 resistant variants had a mutation. Whole transcriptome analysis using a RNA-Seq demonstrated that genes involved in SOS response and DNA repair were significantly up-regulated by norfloxacin. Determining the MICs of survival cells after norfloxacin treatment confirmed some of those cells were indeed persister cells. Ten colonies, randomly selected from among those that survived in the presence of norfloxacin, did not exhibit increased MIC. Thus, both the low mutation frequency of the target gene and SOS response under norfloxacin suggested that persister formation might contribute to the resistance of DR1 against norfloxacin. The persister frequency increased without a change in MIC when stationary phase cells, low growth rates conditions, and growth-deficient dnaJ mutant were used. Taken together, our comprehensive approach, which included mutational analysis of the target gene, persister formation assays, and RNA sequencing, indicated that DR1 survival when exposed to norfloxacin is related not only to target gene mutation but also to persister formation, possibly through up-regulation of the SOS response and DNA repair genes.

환경 오염물질의 진보된 독성 평가 기법 (Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • 제14권1_2호
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

The Study of Mutation Spectrum in Iac / Gene of Transgenic Big Blue$\textregistered$ Cell Line Following Short-Term Exposure to 4-Nitroquinoline N-oxide

  • Youn, Ji-Youn;Kim, Kyung-Ran;Cho, Kyung-Hea;Ryu, Jae-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 1996년도 제19회정기학술대회(The 19th Symposium of the Korean Society of Environmental Toxicology)
    • /
    • pp.64-64
    • /
    • 1996
  • Transgenic animal and cell line models which are recently developed in toxicology field combined with molecular biological technique, are powerful tools for studying of mutation in vivo and in vitro, respectively. The Big Blue mutagenesis assay system is one of the most widely used transgenic systems. Especially, for the study of direct acting mutagens, Big Blue cell line is very useful and powerful to evaluate mutagenicity because the mutation frequency and mutationspectrlun showed no distinct differences between cell line and animal. The Big Blue cell lines carry stably integrated copies of lambda shuttle vector containing lac I gene as a mutational target. These lambda shuttle vectors are useful for various mutagenesis related studies in eukaryotic system due to their ability to be exposed mutagen and then transfer a suitable target DNA sequence to it convenient organism for analysis. We tried to assess the mutagenic effect of 4-NQO with Big Blue cell line. After the treatment of 4-NQO, genomic DNA was isolated and lambda shuttle vector was packaged by in Vitro packaging and then these were plated on bacterial host in the presence of X-gal to screen mutation in the lac I. We determined MF as a ratio of blue plaques versus colorless plaques and now undergoing the mutation spectrum of 4-NQO in lac J gene sequence.

  • PDF

Resistance to Thyroid Hormone Syndrome Mutation in THRB and THRA: A Review

  • Jung Eun Moon
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.32-34
    • /
    • 2023
  • Resistance to thyroid hormone syndrome (RTH) is a genetic disease caused by the mutation of either the thyroid hormone receptor-β (THRB) gene or the thyroid hormone receptor-α (THRA) gene. RTH caused by THRB mutations (RTH-β) is characterized by the target tissue's response to thyroid hormone, high levels of triiodothyronine and/or thyroxine, and inappropriate secretion of thyroid-stimulating hormone (TSH). THRA mutation is characterized by hypothyroidism that affects gastrointestinal, neurological, skeletal, and myocardial functions. Most patients do not require treatment, and some patients may benefit from medication therapy. These syndromes are characterized by decreased tissue sensitivity to thyroid hormones, generating various clinical manifestations. Thus, clinical changes of resistance to thyroid hormones must be recognized and differentiated, and an approach to the practice of personalized medicine through an interdisciplinary approach is needed.

한국인 백혈병 환자에서 아데노신 디아미나제 유전자의 새로운 변이의 확인 (Identification of Novel Mutations In Adenosine Deaminase Gene In Korean Leukemia Patients)

  • 박기호
    • 생명과학회지
    • /
    • 제20권3호
    • /
    • pp.453-456
    • /
    • 2010
  • 백혈병은 조혈모세포의 비정상적인 증식에 의해 일어나서 질환이고, adenosine deaminase (ADA) 유전자는 백혈병의 약물 작용점으로 중요하다. 이러한 연구의 일환으로 한국인 백혈병 환자 20명의 ADA 유전자의 변이를 조사하기 위해 혈액 genomice DNA를 추출하여 염기서열을 결정하였다. 그 결과 nonsense 변이인 F101F 하나, missense 변이 E260K, D8Y 각각 하나, 그리고 외국에서는 보고되지 않은 것으로 정상인에서 IVS6-52 에 GC가 도입된 것을 확인하였다. 백혈병 환자와 유전자 변이간에 통계학적인 차이점은 없지만 이러한 연구는 앞으로 백혈병의 진단 마크 개발에 도움이 될 것으로 사료된다.

Enhancement of antimicrobial peptide genes expression in Cactus mutated Bombyx mori cells by CRISPR/Cas9

  • Park, Jong Woo;Yu, Jeong Hee;Kim, Seong-Wan;Kweon, Hae Yong;Choi, Kwang-Ho;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제37권1호
    • /
    • pp.21-28
    • /
    • 2018
  • CRISPR/Cas9 gene editing system is an efficient method to mutation in a sequence specific manner. Here we report the direct transfection of the Cas9 nuclease and gene specific guide RNA can be used in BM-N cell line derived from Bombyx mori ovarian tissue to enfeeble function of endogenous gene in vitro. We have used gene editing system to negative regulation components of major signaling cascade, the Toll pathway, which controls B. mori resistance to microbe infections, such as fungi and gram positive bacteria. We demonstrate that the $I{\kappa}B-like$ protein Cactus may controls the activation of transcription factors such as Rel A and Rel B. The direct transfection of Cas9 nuclease and Cactus-specific guide-RNA complex may be used in BM-N cells to disrupt the function of endogenous genes in vitro. A mutation frequency of 30-40% was observed in the transfected cells, and various mutations caused the target region. Moreover, RT-PCR analysis revealed that Cactus gene was down regulated after these mutations. More importantly, mutation of BmCactus stimulated expression of lysozyme, moricin, and lebocin genes. These results suggest that the CRISPR/Cas9 systems are expected to efficiently induce site-specific mutations and it was possible to produce antimicrobial peptide through the gene editing.

유전자 교정 기술의 생의학적 응용 (Biomedical Application of Gene Editing)

  • 박주찬;장현기
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.29-36
    • /
    • 2022
  • The CRISPR system has revolutionized gene editing field. Cas9-mediated gene editing such as Indel induction or HDR enable targeted gene disruption or precise correction of mutation. Moreover, CRISPR-based new editing tools have been developed such as base editors. In this review, we focus on gene editing in human pluripotent stem cells, which is principal technique for gene correction therapy and disease modeling. Pluripotent stem cell-specific drug YM155 enabled selection of target gene-edited pluripotent stem cells. Also, we discussed base editing for treatment of congenital retina disease. Adenine base editor delivery as RNP form provide an approach for genetic disease treatment with safe and precise in vivo gene correction.

Identification of LAMP2 mutations in early-onset hypertrophic cardiomyopathy by targeted exome sequencing

  • Gill, Inkyu;Kim, Ja Hye;Moon, Jin-Hwa;Kim, Yong Joo;Kim, Nam Su
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.87-91
    • /
    • 2018
  • X-linked dominant mutations in lysosome-associated membrane protein 2 (LAMP2) gene have been shown to be the cause of Danon disease, which is a rare disease associated with clinical triad of cardiomyopathy, skeletal myopathy, and mental retardation. Cardiac involvement is a common manifestation and is the leading cause of death in Danon disease. We report a case of a 24-month-old boy with hemizygous LAMP2 mutation who presented with failure to thrive and early-onset hypertrophic cardiomyopathy. We applied targeted exome sequencing and found a novel hemizygous c.692del variant in exon 5 of the LAMP2 gene, resulting a frameshift mutation p.Thr231Ilefs*11. Our study indicates that target next-generation sequencing can be used as a fast and highly sensitive screening method for inherited cardiomyopathy.

A Novel ABC Transporter Gene ABC2 Involved in Multidrug Susceptibility but not Pathogenicity in Rice Blast Fungus, Magnaporthe grisea

  • Lee, Young-Jin;Kyosuke Yamamoto;Hiroshi Hamamoto;Ryoji Nakaune;Tadaaki Hibi
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.21-22
    • /
    • 2003
  • Fungicide treatment is the most important method for the control of plant diseases caused by phytopathogenic fungi. But fungicide resistant strains have appeared in many phytopathogenic fungi. Until now, molecular mechanisms of fungicide resistance such as mutation of target protein, overproduction of target enzyme and detoxification of fungicide have been designated. Recently, it was demonstrated that active efflux of fungicides mediated by ATP-binding cassette (ABC) transporters also contributes to fungicide resistance in several filamentous fungi, such as Aspergillus nidulans, Penicillium digitatum and Botrytis cinerea.(중략)

  • PDF